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Fracture criteria at the tip of fluid-driven cracks in the earth
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Abstract. The effect of high confining pressure on fluid-filled
crack growth is considered. Exact solutions are given for a two-
dimensional horizontal crack in an infinite elastic body using the
approximation of Dugdale-Barenblatt (DB) model. It is shown
that for equilibrium cracks (i.e. for cracks on the verge of propa-
gation) the large-scale crack characteristics, such as fluid
overpressure, apparent fracture toughness, maximum opening of
the crack and crack volume, grow with increase of confining
pressure. - These effects result from a pressure induced fracture
resistance (PIFR). If basic parameters of the DB model (tensile
strength and critical crack opening displacement) are independent
of confining pressure then PIFR dominates over intrinsic rock
strength starting from quite shallow depth (tens to hundreds of
meters).

Introduction

Experimental investigations demonstrate that tensile fracture
resistance, which is commonly characterized by fracture
toughness K. [Atkinson and Meredith, 1987], grows with the
increase of confining pressure [Perkins and Krech, 1966; Abou-
Sayed, 1977; Schmidt and Huddle, 1977; Thallak et.al., 1993].
This increase in resistance may be partially related to the effect of
confining pressure on fracture mechanism in the process zone
(the region of inelastic deformation where fracture actually takes
place). At the same time, it is obvious that confining pressure
decreases tensile stresses in the crack tip region, leading to the
apparent increase of strength. This pressure-induced fracture
resistance is quite significant. As we will show below, the level
of fluid pressure when a fracture is on the verge of propagating is
determined by confining (lithostatic) pressure rather than by
intrinsic rock strength starting from quite shallow depth.

LEFM (Linear Elastic Fracture Mechanics) is valid, strictly
speaking, only in the case of ideally brittle fracture. In reality
fracture is always preceded by inelastic deformation
(microcracking or plastic flow) near the crack tip. Classical
LEFM is applicable if the inelastic zone is small compared with
other characteristic dimensions of the problem [Irwin, 1957].
However, experimental data for metals as well as for rocks
[Labuz et.al., 1987; Swanson, 1987] show that the process zone
dimensions commonly are not small compared to typical
laboratory specimen sizes. Recently Rubin [1993] pointed out
that at high confining pressures there is no K-dominant region
surrounding the process zone, which means that classical LEFM
approach cannot be used. There exist, nonetheless, many
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approaches that allow one to get rid of nonlinearity or to put it in
the boundary conditions. One such an approach is the Dugdale-
Barenblatt (DB) model [Dugdale, 1960; Barenblatt, 1962], which
is also referred to as a tension-softening model [Hashida et.al.
1993].

The DB model holds that a thin plastic zone forms in the crack
plane ahead of the crack tip. Cohesive forces o7(8), which
generally depend on crack wall separation 8, act within this zone
perpendicular to the crack plane. Fracture is usually assumed to
take place when critical opening displacement §,. is exceeded.
Cohesive forces can be related to surface energy y or fracture
energy G, calculated over the unit thickness of a specimen,

’
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or to the invariant J-integral [Rice, 1968]. Existence of thin in-
plane process zones is confirmed experimentally. They were
observed in metals by Dugdale [1960] and in rocks by Swanson
[1987]. Measurements of critical opening displacement &, for
metals as well as for rocks gave rise to the values of
8. ~0.01 mm, large compared to a crystal lattice constant,
which suggests that the fracture mechanism is plastic rather than
brittle.

Although the nature of cohesive forces is not fully understood,
the DB model may be successfully employed to interpret rock
fracture experiments [Hashida et.al., 1993]. There exist
numerous solutions for tensile cracks at zero confining pressure
[see e.g. Rice, 1968]. At the same time, fluid-driven cracks under
high confining pressures are of considerable interest from the
point of view of geophysical applications. Below we present
exact solutions for the DB model for cracks in an infinite body
assuming ideal plasticity in the process zone (i.e.
o7 (8)= const).

Mathematical formulation

Let us consider a two-dimensional crack having length 2a in
an infinite elastic body subjected to a confining pressure Doo
(Figure 1). Internal pressure opening the crack is applied to its
surface on the interval |x| < a—Ar; cohesive stresses 6(x) = oy
act on the interval a— Ay <|x| < a. The crack is assumed to be
in equilibrium (i. e. on the verge of propagation); in terms of the
DB model this means the crack wall separation at the base of the
cohesive zone (|x| = a— Ar) equals the critical opening O.. Let
us also suppose that unpenetrated regions (tip cavities) having
length Ag and internal pressure pg that is less than fluid
pressure p exist near crack tips [Rubin, 1993]. Thus, the
boundary conditions on the crack walls may be written as
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Figure 1. Schematic view of a plain strain problem for a two-
dimensional crack in an infinite elastic body subjected to internal
fluid pressure p and hydrostatic confining pressure p,. Half-
length of the crack is a, Ag is unwetted region ahead of the fluid
front, having pressure pg, and Ay is a cohesive zone; at the base
of the cohesive zone (x = a— Ag) crack opening equals critical
opening displacement &, (not shown).

follows:
—-p, 0<|x]<a—-(Ar+Ayg)
-ps, a—(Ap+Ag)<|x|<a-Ar @)
or, a-Ar<|x|<a.

o(x)=

Since the function o(x) was chosen to be symmetric with respect
to the origin (center of the crack), results obtained below
correspond to horizontal cracks or to the cracks in which changes
in hydrostatic pressure are small compared to fluid pressure p.

In the case of plain strain deformation symmetric with respect
to the x axis, the solutions to the equations of theory of elasticity
can be found from Kolosov-Muskhelishvili formulae [see e.g.
Muskhelishvili, 1954; Tada et.al., 1973]:

o,, =Re ¢’+y Im ¢” 3)
2uU, =2 (1-v) Im ¢~y Re ¢/, e

where [ stands for the shear modulus, v is Poisson's ratio and
¢ (z) is an analytical function of the complex variable z = x +iy.
Displacements U y equal zero on the real axis outside the crack
interval (i.e. In@ =0 for y=0, |x| > a). Differentiating the
last condition and keeping in mind that stresses should approach
P at infinity, we get the following boundary conditions for the
function ¢’:

Re ¢'(z)=0o(x), |x|<a
Im ¢’(z)=0, |x|>a )
0'(2) > =Py 2] > eo.

The explicit form of ¢’(z) can be found using Keldysh - Sedov
formula [Muskhelishvili, 1953; Lavrent'ev and Shabat, 1958):

)=_\/—§sz ) t+at z

O(0)+ps __dt
-
I
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From (3) and (6) one may find stresses in the crack plane
(y=0,x=a+¢&, £>0):

G)‘)‘(a+§)l,\'=0
a+§ dt

nmj W)= O
+—\/2a§+§2 jc(t)
a

e -t a+§ )

As & — 0, the second term in (7) goes to o +O(E7%), i.e.
remains finite, so that the condition for the absence of tip
singularity may be written as:

J‘ cr(t)+p°° -0,

12

®)
which leads to

Ap arcsin § = (p,, — pg) arccos S+(G +pg) arccosT. (9)
In equation (9) Ap is fluid overpressure, or driving pressure,

Ap=p=po, S=1-(Ar+Ag)faand T =1-Ap/a.
For A7, Ag <<a,

Ap:"-:Ta((poo—ps)ﬂAT'i"As +(GT+pS)‘\/A_T-)- (10)

The crack opening &(x) can be found from equations (4), (6) and

(8):
2(1 V) J— o(t)ds
o0(x)= dt an
I '[ t—oa? -
Taking the integral, we get:
8(x)=2(1—v)a[(P—ps)I(X,S)+(oT+pS)1(X,T)], (12)
where X =x/a and
(U V)=(V+U)ln| (1= )1-V?) +1+ 0]
' | V+U |
+(V—U)1n| (]—Uz)(l—vz)H—UVI
T

|' 13)

The crack opening at the base of the process zone is then

8a-Ap)= 2(;‘ v)

a [(p—ps>1<T,S)+2(cT+ps)T m—;-]

(14)
and the opening at the center is

8 max = 8(0) = i(_:t_ﬁa

1+1-82
-[(p—-ps)Sln—S——-—+(GT+pS)T]n

1+w/1-—T2}
—

15)
If one specifies the DB model parameters (8, and o) and
loading configuration (a, p., and Ag or Ag/A7), equations (9)
and (14) provide corresponding equilibrium  values of
overpressure Ap and process zone length Ar.
For Ag =0 (fluid fills the entire crack)
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8a-ar) =20V (5r4p) T L, (16)
: b T
_ Ji-12
8, =20V (5,4 p) Tlnlf'—lT—T. an
For Ag =0 and Ay <<a,
4(1-
Sa-Ar) =2V A6y 4p). (18)

For Ay, Ag <<a,

Smax =iﬁ%—ﬁ((p_ps)\’AT +As +(0'T+ps)»\/—A7).

19)
It follows from equation (10) that in the limit of large cracks
(a>>Ar) and not very small confining pressures (p., 207),
excess pressure Ap is small compared to confining pressure and,
consequently, p = p,,. In this case equations (10) and (19) yield

2(1-v)
n

Finally, from (11) one can find the volume V of an equilibrium
crack, taken over the layer of unit thickness:

8max -

alp . (20)

V= 2]1‘6(x) dx

0
a2
=3(1_“l)“_[(p_ps) SV1-82 + (o7 +pg)TV1-T? ]
' 2D
In the same limiting case when equation (20) is valid,

n(l-v) »
V=—-——=a“Ap.
[

(22)

Pressure Induced Fracture Resistance

The solutions above show that the large scale values that
characterize an equilibrium crack (excess pressure Ap, opening
at the center 8,,,,, volume V') grow with the confining pressure
P (or with depth, if cracks in the Earth are considered). It is
evident that apparent fracture toughness, if one formally
introduces the latter as Ky =Ap+v7a, has the same kind of
pressure dependence. In the limit of a large crack (A7 <<a) and
zero tip cavity pressure equation (10) implies that

8(Ar +A
Kg=or{PL +p, [FLTES
T T

Here it is instructive to compare equation (25) with
corresponding expression resulting from LEFM. In the
approximation of LEFM stress at the crack tip O, may be
written as

(25)

K

Gip —\/5—1’;_: = Peos (26)
where K; is mode I stress intensity factor, K; = Ap«/ﬁ ,and r
is the tip radius. K; equals apparent fracture toughness Ké‘EF M
when the crack is on the verge of propagation. Keeping in mind
that the tip stress in this case is related to the critical stress
intensity factor K;., which is regarded as a (pressure dependent)
rock property, Ogp, =K, / y27r, from (26) one may deduce
that

KGEM =Ko+ par2nr. @7
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Rewriting (25) as

KQ = K;c +Pm\’ 2n§ejf P

we see that K;c =07+/8A7/n plays the role of "intrinsic"
fracture toughness and the value & =4(A7 +Ag) / n? should
be called effective tip radius. Obviously, the latter has nothing to
do with the actual tip radius, strongly depends on loading
geometry and may in fact significantly exceed the process zone
size (which is of the order of A7). Note that K ;C is also
dependent on the loading configuration through
Ar =A7(pe.,Ag) [Rubin, 1993]. Thus, it should be concluded
that at high confining pressures there is no definite set of rock
properties that can be effectively used as fracture criteria in the
frame of LEFM.

Growth of equilibrium overpressure Ap (or apparent fracture
toughness K) with confining pressure reflects an effective
increase of rock strength with depth. The component of fracture
toughness that scales with confining pressure p,, may be called
pressure induced fracture resistance (PIFR). Existence of PIFR
qualitatively explains the rock strength increase with confining
pressure observed in many experiments [Schmidt and Huddle,
1977; Atkinson and Meredith, 1987; Thallak et.al., 1993],
although available data are not sufficient to evaluate the effect of
(possible) pressure dependence of 67 and &, on experimental
results.. Note that the effect of confining pressure on apparent
fracture toughness K, depends not only on the pressure
magnitude, but also on the effective tip radius &eﬁc (equation
(23)). This may be the reason why the slopes of the Ko(p)
curves for the same material at different experimental
configurations vary, while the measurements at zero
(atmospheric) pressure are fairly consistent with each other (see
e.g. Figure | in Hashida et.al. [1993)).

If the pressure independence of the tension-softening curve
o7(0) reported for lidata granite for confining pressures up to
26.5 MPa [Hashida et.al., 1993] is observed in other materials,
then PIFR dominates intrinsic rock strength starting from depth

(28)

g>9r |_Ar__

pg VAr+Aag’
where p is rock density and g is gravitational acceleration.
According to the data of Hashida et.al. [1993], peak tensile
strength of lidata granite approximately equals 7 MPa. If we
assume for estimate 67 =20 MPa and p=3- 10° kgm‘3 , then
even in the case of Ag =0 (tip cavity is absent) PIFR prevails
over intrinsic rock strength starting from depths as low as
0.7km . In fact, PIFR dominates over intrinsic rock toughness at
even shallower depths if the fluid doesn't penetrate up to the base
of the process zone, as indicated by both experimental data
[Warpinski, 1985; Johnson and Cleary, 1991] and theoretical
considerations [Rubin, 1993]. If, for instance, Ag/Ar 210?
(say, Ag>3m and Ar <3cm), then crack propagation may be
controlled by lithostatic pressure at depths less than 100m.
Effects of confining pressure on fracture propagation are
especially important at large depths. As a rough example,
consider a crack at a depth of 100km ( p., ~3 GPa). Suppose
that in one case the crack is completely filled with fluid (A s=0)
and Ay is ~1mm (grain size) and in another case unwetted tip
regions have a length of ~1m. 1In the first case
Kg ~ 108 Pa-m¥?, and in the second case Ko ~ 3-]09Pa-ml/2,
which is 102-3-103 times greater than the typical zero pressure
values for rocks [Atkinson and Meredith, 1987]. In particular,
this suggests that fracture resistance associated with dike
emplacement at depth may not be negligible compared to the

(29)
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mechanical energy release rate and viscous dissipation due to a
magma flow, which significantly complicates equations
governing dike growth [Spence and Turcotte, 1985; Lister and
Kerr, 1991].

Conclusions

The purpose of this paper was to show that fracture criteria for
hydro- or magmafractures at depth essentially depend on
confining pressure. Exact solutions for the equilibrium
overpressure, shape and volume of a fluid-driven crack were
obtained in the frame of a Dugdale-Barenblatt (tension-softening)
model. They describe, strictly speaking, a two-dimensional
horizontal crack far from the body boundaries. It follows from
the solutions that significant characteristics of equilibrium cracks,
such as overpressure Ap, maximum opening 8,,,, and volume
V, as well as apparent critical stress intensity factor K, grow
proportionally to the confining pressure p,. From the
mechanical point of view such an increase is equivalent to the
increase of rock strength, i.e. to the existence of pressure induced
fracture resistance (PIFR). This PIFR depends not only on
pressure but also on the dimensions of the unwetted regions Ag
near the crack tip, which possibly explains the difference in
slopes of experimental Kg(p.,) curves obtained for the same
material at different loading configurations. According to our
estimates, PIFR exceeds intrinsic rock strength starting from
quite shallow depth on the order of hundreds or even tens of
meters.
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