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‘What controls the along-strike slopes of volcanic rift

zones?

Yuri A. Fialko' and Allan M. Rubin

Department of Geosciences, Princeton University, Princeton, New Jersey

Abstract. We investigate the dynamics of viscous pressure losses associated with lateral
magma transport in voleanic rift zones by performing (1) coupled elastic-hydrodynamic
simulations of downrift magma flow in dikes and (2) analog experiments mimicking lateral dike
propagation in the presence of an along-rift topographic slope. It is found that near-source
eruptions are likely to be favored by shallow slopes while distant downrift eruptions may be
encouraged by steeper slopes, provided that along-rift variations in the tectonic stress are
negligible or uncorrelated on the timescale of multiple dike intrusions. This implies the
existence of a critical slope to which a volcanic rift zone would naturally evolve. Such behavior
is produced by three-dimensional (3-D) elastic effects and is controlled by the ratio of the driving
pressure gradient due to the along-strike topographic slope to the vertical gradient in the excess
magma pressure in the dike. This model may be viewed as complementary to commonly cited
mechanisms that appeal to magma viscosity and the dynamics of freezing of lava flows at the
surface to explain the low profiles of basaltic shield volcanoes. Our estimated values of the
critical slopes are in general agreement with observations in Hawatian rift zones, but further
development of fully 3-D models is required for more accurate predictions.

1. Introduction

Volcanic rift zones are regions where new crust is formed as
a result of interaction between mafic volcanism and
extensional tectonics. The morphology of volcanic rift zones
varies greatly between different settings on Earth, as well as
between Earth and other terrestrial planets. Nonetheless, rift
zones extending from discrete magmatic centers are almost
universally characterized by the presence of along-strike
topographic slopes. These slopes are generally of the order of
a few percent and tend to be fairly uniform along strike (Figure
1). In many cases (e.g., Hawaii), they are also considerably
shallower than across-strike slopes. The nature of these
variations in surface elevation is not well known. While it is
generally recognized that the observed topography is produced
by some combination of volcanic construction, fault
tectonics, mass wasting, and {for subaerial volcanic rift zones
on Earth) erosion, the particular mechanisms involved are still
poorly understood. For instance, the gentle slopes of shield
volcanoes are commonly attributed to the low viscosity and/or
high effusion rates of the erupted basaltic lavas [e.g.,
MacDonald e: al., 1983; Mark and Moore, 1987). That is,
low-viscosity ‘lavas travel large distances from the eruption
site before freezing, which effectively spreads the erupted
volume over a large area. However, it seems that the dynamics
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of lava cooling by itself cannot be invoked to explain the
systematics of the along-strike topography of volcanic rift
zones. This is because magma that reaches the surface during
individual fissure eruptions flows nearly perpendicular to the
rift zone axis, following the steeper across-strike slopes, i.e.,
in the wrong direction if it were to control the along-rift
topography. This is vividly demonstrated by the shape of lava
flows erupted along the currently active volcanic rift zones of
Mauna Loz and Kilauea in Hawaii [e.g., Holcomb, 1987].
Dieterich [1988] has suggested that the across-strike slopes of
volcano flanks may be governed by the balance between
friction on the basal decollement faults and a hydrostatic push
due to the intruded magma. While this mechanism may be
relevant to the across-rift topography, it also fails to address
the origins of the along-rift slopes.

In this paper we investigate one possible mechanism by
which the observed along-strike topographic slopes could
result from the dynamics of the shallow “plumbing” system of
the rift. Field studies indicate that volcanic rift zones are
composed of extensive dike swarms transporting magma
downrift from a central magma chamber [Fiske and Jackson,
1972; Pollard et al., 1983; Knight and Walker, 1988].
Therefore it is reasonable to assume that the long-term along-
strike topography of volcanic rift zones is to a large extent
controlled by eruptive patterns of laterally propagating dikes
and thus in some average sense reflects viscous pressure losses
within these dikes. To simplify the problem and gain some
general insight into the fluid-mechanical aspects of dike
emplacement, we consider models of dike propagation in the
limit of negligible along-rift variation in the tectonic stress.
The assumption of uniform tectonic stresses may be
appropriate, for example, during volcanically robust shield-
building phases when magmatic input periodically imposes a
lithostatic state of stress everywhere along the rift. In the
presence of substantial along-strike variations in the tectonic
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Figure 1. Along-strike slopes of volcanic rift zones in Hawaii. Data are taken from Holcomb [1987] and Fornari

[1987].

stresses (a likely case, e.g., on slow spreading mid-ocean
ridges) the situation is more complex. First, along-strike
variations in the horizontal stress may affect volcanic
construction by dictating the position of eruption sites.
Second, nonuniform extension may result in different degrees
of normal faulting and crustal thinning along the rift which
may affect topography either directly or via isostatic
adjustment. The effects of tectonic loads may in principle be
incorporated in the model discussed below if the along-strike
variations in crustal stresses are known a priori.
Unfortunately, this is rarely the case. While recognizing that
lateral stress variations may be important in some instances,
we shall demonstrate that the values and constancy of the
along-strike slopes of volcanic rift zones may be explained by
dynamic aspects of magma transport in a homogeneously
stressed medium. Note that the effects of nonuniform tectonic
stresses that result from periodic dike intrusions might

deep magma
source

“average out” on the timescale of several generations of
intrusions. For simplicity, we shall also neglect thermal
effects (e.g., temperature-dependent magma viscosity,
freezing, etc.). Implications of these assumptions for our
results are discussed further in section 6. We begin by
considering the emplacement of a single dike propagating in
the presence of a small along-rift topographic slope (Figure 2).

2. Driving Forces and Governing Equations

As established by field observations and theoretical and
physical modeling [Fiske and Jackson, 1972; Rubin and
Pollard, 1987; Ryan, 1987; Lister and Kerr, 1991}, lateral
dikes propagate along the level of neutral buoyancy (LNB) that
physically corresponds to the depth at which the vertical
gradient in the excess magma pressure changes sign [Fialko

and Rubin, 1998]. For simplicity, we assume that the LNB

Figure 2. A dike propagating along the level of neutral buoyancy (LNB) in the presence of a small topographic
slope ¢. The flow is fed by a source (e.g., shallow magma chamber) at constant pressure Ps-
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parallels the Earth’s surface and that the dike is symmetric with
respect to the LNB (should these conditions be relaxed, the
following analysis would be applicable with simple
modifications of the governing parameters). Magma is
supplied at the source having a constant pressure p, and is
driven by variations in the excess magma pressure along the
dike dp/dx and by the driving pressure gradient due to gravity

G=pugsing, m

where o is the along-strike topographic slope, g is the
gravitational acceleration, and p, is the density difference
between the magma and air or water in the case of subaerial or
submarine rift zones, respectively. For most rift zones the
along-strike slope is small (of the order of 1-10%), and
sinor=¢. For excess magma pressures of several
megapascals (consistent with observations of dike widths of a
few meters) and characteristic along-strike slopes of the rift
zones of several percent [e.g., Fiske and Jackson, 1972; Rubin
ard Pollard, 1987], dikes need to be longer than p,./G ~10
km in order to be driven essentially by the topography [Fialko
and Rubin, 1998]. For volcanic rift zones having lateral
extents of order of 107 km {e.g., in Hawail) [Fornari, 1987], it
is probable that the bulk of the downrift melt transport there is
topography-driven.

Assuming that the magma flow is one-dimensional, laminar,
and Newtonian, Jocal conservation of maess is given by

& )
where w is the dike half width and 77 is the magma dynamic
viscosity. Equation (2) states that the rate of dike opening at 2
particular point is produced by 2 local divergence of volume
flux. The excess magma pressure p opening the dike is given
by the difference between the magma pressure and the ambient
normal stress. As mentioned in section 1, we are interested in
the case when the along-dike variations in the ambient normal
stress are small compared with either the excess pressure at the
source or G. In our analysis we assume that the energy required
to fracture the host rock is negligible compared with viscous
dissipation in the magma [Stevenson, 1982; Lister and Kerr,
1991]. The implications of relaxing this assumption are
considered in section 6; essentially, if the fracture energy is
sufficient to impede the flow, then in the presence of 2
topographic siope downrift eruptions are favored.

For dikes having lateral extent x, substantially exceeding
the dike height 2k (Figure 2), the dike thickness profile in any
vertical cross section far from the leading edge depends on the
excess pressure distribution in that section alone. This is
because along-strike variations in excess pressure are small
and the deformation is well approximated by plane strain
conditions. Following Lister [1990] and Lister and Kerr
19891}, we consider two canonical distributions of the dike-
perpendicular stress with depth capable of trapping dikes at the
level of neutral buoyancy. In the first case, corresponding to a
density step between the two layers of rock, the excess magma
pressure distribution p(z) varies piecewise linearly with depth
with a kink at the LNB z=0. Thatis, p{z)= p,—A4Apgz, where
Do is the excess pressure at the depth of the dike middle and 4p
is the density contrast between the magma and the host rocks
that is negative above the LNB and positive below. By
imposing the condition of zero stress intensity factors at the
dike top and bottom (see equation (A3) in the appendix), one
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obtains the following relation between pg and the dike half
height &

2
po==4pgh. ®
A

In the second case, the rock density increases linearly with
depth and the excess magma pressure distribution is parabolic,

R
@)= po +{Pp -po)z—-é»zz,

where p,, is the magma density, P, is the host rock density at
the LNB, and R is the host rock density gradient. We consider
the case pg = p,,, which gives rise to symmetry with respect to
the LNB. The requirement of zero stress intensity factors at the
dike edges in this case gives rise o the relation

i .2
= — Roh“ . 4
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The maximum dike half width w, may be related to the dike half
height # using two-dimensional (2-D) elastic solutions for
equilibrium cracks in an infinite body [Lister, 1990; Khazan
and Fialko, 1995},

wo =@f]§ﬁ, ®

where M is the elastic stiffness of the host rocks,
M=pf(1-v), i being the shear modulus and V being
Poisson’s ratio. The dimensionless coefficient ¢ depends on
the excess pressure distribution with depth and specified
fracture criterion. For a uniform excess pressure distribution
resulting in stress intensity factors pokvz at the dike edges,
¢=1. Assuming zero stress intensity factors at the dike tips,
one obtains ¢=1/2 for the plecewise linearly varying excess
pressure (density step LNB) and ¢=2/3 for the gquadratically
varying excess pressure (density gradient LNB) (see, e.g.,
Lister [1990] for details).

Because under plain strain conditions the dike width, height,
and excess magma pressure are related through 2-D elasticity
and may be expressed as simple functions of each other,
equation (2) may be integrated over the dike height to yield a
cross-sectionally averaged continuity equation in terms of one
unknown (e.g., the dike height) only. For a dike propagating
along 2 density step LNB, we obtain

%i-_z.ﬁz_!.égsffi(hv{_%_y)?
o 3mMP\ 7w ) Ak \ox ’

where ¥ = nGf24pg is essentially a ratio of the driving
pressure gradient due to topography to the vertical gradient in
the excess magma pressure, and @ may be interpreted 2s a
dimensionless cross-sectionally averaged magma velocity
given by :

®

“

[ widz

=L, ™
oWz
where 7 = z/k{(x,¢) and W(Z)=w(z)/w, (for given x) is a self-
similar crack profile [Lister, 19901. For a symmetric 2-D crack
with a2 linearly varying excess pressure, & =0.6.
Nondimensionalization of (6) with respect to the scales
3
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where h, is the dike half height at the source (x = 0), gives rise
to the following second-order nonlinear partial differential
equation for the dimensionless dike height 2 = i/ A:

— - — — — -
oh _R* -3k _onlon )
== h—tT = —==7 | o
ot 30 g% K\ &K }

where ¥=x/%, f=1/f, and it is assumed that 7 is independent
of x. On the assumption that the 2-D approximation is valid
all the way to the leading edge of the dike (a point to which we
shall return below), equation (9) may be solved numerically
given some initial height distribution, subject to the boundary
conditions A =1 at the source (X¥=0)and # = 0 at the leading
edge (X =Xy ). For y= 0 (i.e., in the absence of a topographic
driving pressure gradient), Lister [1990] obtained a family of
elegant self-similar solutions to (9) in which the dike volume V
was specified to vary as a power law function of time, Ve 4,
where a is 2 numerical constant. The dike height profile for the
geologically interesting case of constant source pressure
{which follows from Lister’s general solution for @ = 0.5) is
shown in Figure 3a. As illustrated by Figure 3a, the height,
width, and excess pressure of a dike driven by an excess source
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Figure 3. (a) Self-similar dike height for a dike trapped at a
density step LNB and driven by the excess source pressure
(equation (9)). (b) Height near the leading edge of a steady
state topography-driven dike (equation (11)).
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pressure all monotonically decrease toward the leading edge,
reflecting the viscous pressure losses associated with dike
advance. Such dikes would be most likely 10 erupt directly
above the source, i.e., where their height is greatest.

When 7 # 0 (in the presence of an external driving pressure
gradient), self-similarity does not hold, and equation (9) must
be integrated from given initial conditions. However, one may
observe that for y >>!oh / o | (i.e., when the dike “tail” is long
enough that the dominant driving pressure gradient for the flow
is provided by the topography), equation (9) has a trivial
solution for the dike tail, % =const=1. Constant height in the
dike tail, together with the constant driving pressure gradient
provided by the topographic slope, implies constant magma
flux through the tail. This suggests that the “nose” of a
sufficiently long dike may propagate in a steady state fashion
at the dimensionless velocity dxy / of =7 dictated by the flux
from the tail while preserving its shape in the reference frame
of the advancing magma front. Provided the assumption of
steady state (or sufficiently slowly varying) conditions within
the nose is valid, we introduce a moving reference frame with
along-flow coordinate £=X-%, (z—) and put oh/F=0 to
obtain from (9)

3
ézsz"+;z<z'2-ﬁf{lzm}ﬁ, 10
3 3 (3
where ' =dh/dE. Integration of (10) with appropriate
boundary conditions 2 =0for A =land 2 =0 for £ =0
yields

-k
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The dimensionless dike height % over the dike nose is shown
in Figure 3b as a function of the scaled dimensionless distance
behind the dike leading edge. As may be seen from Figure 3b,
(11) predicts a nose length (dimensionally) of the order of ¥4,
over which the dike height monotonically decreases from its
constant value in the tail to zero at the leading edge.
Comparison of Figures 32 and 3b indicates that for a given
topographic slope, dikes that are shorter than p,/G are most
likely to erupt near the source and thus tend to increase the
along-strike slope of volcanic rift zone, while much longer
dikes may erupt essentially anywhere along their propagation
path. Equation (11) predicts that topography-driven dikes
would passively track a given slope without the ability to
systematically modify the latter. However, the leading edges
of actual dikes do not look like the ones shown in Figure 3. As
is demonstrated below, by neglecting the intrinsic three-
dimensionality of elastic displacements in the dike nose
region we have omitted some important dynamic aspects of
magma flow which may cause dikes to increase their height
downrift, given sufficiently large slopes. The possibility of
such behavior may be rationalized from the following
qualitative argument. Within the dike nose, decreases in
elastic thickness near the leading edge must be offset by
increases in the magma pressure gradient in order to maintain
the constant propagation velocity of a topography-driven
dike. Dimensionally, the magnitude of the available additional
driving pressure gradient is of the order of p, /!, where [ is an
effective nose length (Figure 2). Because the nose length {
cannot be substantially smaller than the dike height due to the
constraints of 3-D elasticity, for sufficiently large topographic
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slopes (e.g., when G > p, /1), the excess pressure gradient in
the nose may not be able to drive the magma through the
narrowing nose at the velocity dictated by the incoming flux
from the dike tail. As a result, the nose will act as 2
“pottleneck” restraining the flow, so the dike must respond by
“inflating” the nose (i.e., by increasing the excess magma
pressure some distance behind the leading edge), which
increases the nose thickness and the velocity at which magma
flows through it. In principle, this increase in excess magma
pressure may result in local increases in the nose height. This
would, in turn, favor downrift eruptions and in the long term
could tend to reduce the along-strike slope. To gain further
Quantitative insight into the dynamics of viscous pressure
losses in such a dike, we consider a simplified model in which
vertical and horizontal 2-D solutions are matched at the base of
the dike nose and variations in the dike thickness and excess
pressure in the vertical direction are neglected.

3. Matched Two-Dimensional Solutions

Sufficiently close to the dike leading edge (i.e., closer than
the local dike half height), plane strain conditions are more
likely to be satisfied in a horizontal than a vertical cross
section through the dike. We analyze magma flow in the
median (horizontal) cross section through the dike (the plane z
= 0 in Figure 2) near the dike leading edge using a coupled
elastic-hydrodynamic model for a2 2-D fluid-driven crack
described in the appendix. On the basis of the above argument
for a topography-driven dike, the crack is assumed to have a
steady state shape and to move at a constant velocity «

¥ o\ _ml
Unose ™ 3_‘,} tax ;~ 37}M2 U(F)’

where w and p are the nose half thickness and the magma
excess pressure in the plane z = 0, respectively, p,, is the
excess pressure at the base of the nose, I'=Gl/p, is
essentially the ratio of the driving pressure gradients due to
topography and excess magma pressure, and U(I") is a
dimensionless nose velocity to be found from the
corresponding boundary value problem (see the appendix). In
a dike tail having a half width w, (Figure 2) the average magma
velocity in the median cross section u,, is given by

ROse?

(12

2
woG
o
Yo = 13
w =g (13)
The assumption of steady state propagation implies that
Usose = Ugig + 64}

Making use of an 2 priori statement that the nose length I be
proportional to the dike half height 4,

I=1h, (15)

where the proportionality coefficient 4 ~0(1), from (5) and
(12)-(15) one can obtain a2 simple expression for the ratio of
the excess pressure at the base of the dike nose to the excess
pressure back in the dike tail,
2
ol I
r AT,

where the constant ¢ is defined in (5). The dimensionless
nose velocity U is a2 function of two parameters, the

(819
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dimensionless topographic driving pressure gradieat I and a
dimensionless tip suction P, (see the appendix for details).
Solutions for U(I";F,) are shown in Figure 4. As one might
expect, U depends rather weakly on the tip suction [e.g.,
Rubin, 1993], so without loss of generality the latter may be
exciuded from the list of independent parameters. We use
P,=-2 in our further calculations. Also, as is evident from
Figure 4, for I’ larger than unity, U depends on I" almost
linearly. This result is expected as well given that for
Poiseuille flow the velocity scales linearly with the driving
pressure gradient.

It is instructive to consider an asymptotic solution for large
values of I. In this case, (16) reduces to

P -2 k4 , an
Py z

where k is the slope of the U(I") curve for large I. Figure 5
shows the range of dimensionless thicknesses of the dike tail
¢ and dimensionless nose lengths A at which the excess
magma pressure at the base of the dike nose is predicted to
exceed that in the dike tail. As follows from (17) and Figure 5,
increasing ¢ encourages buildup of pressure in the dike nose.
This implies, in particular, that the density step LNB would be
the least effective among geologically reasonable excess
pressure distributions with depth (“concave,” i.e., such that
9* p/ a?* > 0) in producing increases in the excess pressure at
the base of the nose.

Note that while ¢ is given by 2-D solutions for the dike tail,
2 {or the dimensional nose length ) is yet to be defined in a
seif-consistent fashion. One way of constraining A is to
require that the dike opening at the base of the nose (computed
using 2 2-D horizontal cross section) equals that in the dike tail
(computed using a 2-D vertical cross section and given by
equation (5)),

0(0)221=w, =gLzp, (18)

M M

0.5 1.0

T

Figure 4. Nondimensional velocity of a two-dimensional (2-
D) crack as a function of the dimensjonless driving pressure
gradient due to topography I =Gl/p, (see main text and
appendix).
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Figure 5. Range of parameters ¢ and / illustrating when the
pressure at the base of the 2-D dike nose exceeds the pressure in
the dike tail.

where ¢X0) is a dimensionless thickness at the base of the nose
that depends upon the dimensionless driving pressure gradient
I"and is found as a part of the solution to the problem discussed
in the appendix. Combining (15), (17), and (18), we obtain
2./ po= a)(O)k“E/ 2. Numerical solutions indicate that for I"> 1
the values of @(0) somewhat exceed 0.9, while & is
approximately constant and equals ~0.7 (Figure 4). This
shows that in the asymptotic case of large I” the ratio p, / 2o
is larger than unity, and thus for sufficiently large slopes the
excess magma pressure may increase toward the leading edge of
the dike.

The next important step is to identify the critical slope at
which p, / Py exceeds unity. Because I' implicitly depends on
2,/ p, through (15), one needs to make use of a particular
relationship between p, and & (i.e., equations (3) or (4)) in
order to solve (16). Rewriting (16) and accounting for (3), (4),
(15), and (18), we obtain

Y r
Density step _p_,g =-7-z-._}ﬁia‘
‘\Po} 4 a)(O} 4p
Py Po
Ipbj=—122¢. (19
( 44p p, )
(5 Y r) .\~
Density gradient &} =§V< }p g
\Po)  3(0) \ PR
y

20
P

(using the appropriate values ¢ = 1/2 and ¢ = 2/3 in equations
(19) and (20), respectively). Equations (19) and (20) were
solved iteratively to eliminate the dependence of p,/p, on I’
using tabulated values of U and @w(0). Results of these
calculations are shown in Figure 6. For a dike propagating
along a density step, the critical slope at which p,/p, = 1is
given by
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Figure 6. Dependence of the ratio p,/py on the along-
strike slope a. Dimensionless premultiplying factor A eguals
4p/p, in the case of 2 density step LNB and ( poR/ pie)V?

the case of a density gradient LNB. Critical slope ¢,
corresponds 0 p,/py = 1.
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For a dike propagating along the LNB due to a density gradient,
the critical slope is

(212)

a, osz[p“q} (21b)
pig

Estimates of the critical slopes for reasonable geophysical

parameters are given in section 6. Note that the critical slope

for a density step is independent of p, (essentially, the excess

magma pressure at the source), while for a density gradient it is

not.

While these results suggest the possibility of some
interesting feedback associated with magma flow in
topography-driven dikes, there remain several questions which
cannot be addressed by the model considered. First, the model
might be misleading because it rather crudely mimics the
effects of 3-D elasticity and ignores the essentially 2-D nature
of fluid flow within the nose, so that the inferred increases in
excess magma pressure within the nose might be an artifact of
the simplifying assumptions made. Second, even if dikes do
develop increases in the excess pressure within the nose for
sufficiently steep slopes, it is unclear whether these increases
may translate into increases in dike height, given that the 2-D
approximation breaks down within the nose. To verify the
possibility of downrift increases in the excess pressure as well
as the dike height suggested by our approximate 2-D model, we
performed a series of physical experiments and some
preliminary steady state 3-D calculations simulating lateral
dike propagation in the presence of a topographic driving
pressure gradient.

4. Physical Analog Modeling of Downrift Dike
Propagation

Most previous experiments simulating dike propagation
were carried out by injecting fluid into gelatin [Fiske and
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Jackson, 1972; Maaloe, 1987; Lister and Kerr, 1991].
Unfortunately, gelatin experiments offer very little control
over the ambient stress field. In addition, while gelatin has a
low absolute fracture toughness, the small size of the
experimental hydrofractures may result in the main force
balance being between the elastic and fracture properties of
gelatin, so that the effects of viscous pressure losses in the
fluid are small. This is contrary to what is predicted for dikes,
and hence similarity between the experiments and large-scale
magma fracture at depth does not hold [Lister and Kerr, 1991].
To circumvent these problems, we chose a design in which the
fluid is forced between two unbonded surfaces held in contact
by controlled remote stresses. Thus the flow is resisted by the
ambient compressive stress and surface tension only. The
experimental apparatus is shown in Figure 7. Three sheets of
foam rubber having a total thickness of 0.6 m, length of 1.8 m
and breadth of 0.7 m were pressed against a transparent sheet of
polycarbonate (Plexiglas) using two PVC panels connected by
a “piano” hinge along the flow axis. The angle 8 between the
panels was regulated by eight screws put on the base PVC sheet
on both sides of the hinge. The base PVC sheet was rigidly
attached to the Plexiglas lid by a number of steel rods around
the perimeter of the apparatus. Thus the ambient stress in the
foam rubber was controlled by the Young's modulus of the
foam rubber and by the angle 6. Note that if the Plexiglas lid
were perfectly rigid and the foam rubber were linearly elastic,
such a configuration would approximate a density step LNB
with a piecewise linear horizontal stress having a kink at the
LNB. In practice, neither of these conditions was strictly
satisfied, and the details of the stress distribution at the
interface between the foam rubber and the Plexiglas were not
known precisely.

The fluid (dyed glycerol) was injected between the
transparent plexiglas lid and the foam rubber through a hole in
the Plexiglas. To prevent percolation of the fluid into the
porous foam rubber, the latter was isolated by a thin latex
membrane, so that the fluid was propagating between the
Plexiglas and the membrane. In most of the experiments, a
constant-pressure boundary condition was enforced at the
source by maintaining a constant height in a fluid column
above the injection point (Figure 7). The topographic driving

Plexiglas

!
|
i
i

i I ;
| membrane fiuid

DR . . 4

foam rubber

;4 5
: bo 4 QAQ@
:ﬂ‘ k! L
st . loadng gl &
SCrews

Figure 7. Schematic view of experimental apparatus.
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pressure gradient was introduced by tilting the apparatus in the
flow direction at a prescribed angle. The first set of
experiments was performed with no tilting, i.e., the driving
pressure gradient for flow was provided by the excess source
pressure only. Experimentally measured dike shapes
normalized by their maximum extent in the vertical and
horizontal directions are plotted in Figure 8 against theoretical
self-similar dike profiles for the density step and density
gradient LNB deduced using the 2-D approximation (e.g.,
equation (9)). As expected, the theoretical solutions tend to
overestimate dike height near the leading edge because of the
neglect of 3-D elasticity. Otherwise, the observed dike
profiles revealed an overall good fit to the calculated ones.
This, together with the good agreement between the
experimentally measured and theoretically predicted scaling of
the propagation velocity with the inverse square root of time,
was taken as indicating that the main balance in the
experiment was between elastic and viscous forces, as desired.
In the second set of experiments, we investigated the
dynamics of fluid propagation in the presence of large slopes
(40-60%). Figure 9 shows a typical flow evolution in time.
Upon initiation, the flow is driven mostly by the excess source
pressure; asymmetry between the upslope and downslope
directions develops when the effect of the topographic driving
pressure gradient becomes appreciable. As the fluid propagates
farther, a constant height is established in the dike tail. An
increase in the height of the dike nose, compared with the
height back in the tail, is evident when the dike propagates a
distance of about two dike heights (Figure 92). Variations in
the dike height and excess pressure distribution are less
apparent beyond this transition; however, one may observe
that the color intensity (which is a proxy for dike thickness)
along the top and bottom dike edges decreases from the nose to
the tail, where it reaches some background value (Figure 9b).
This decrease in thickness along the dike perimeter is
interpreted as being due to 2 decrease in the excess pressure:
After the passage of the dike nose, fluid is withdrawn from the
top and bottom edges, which is reflected in the decreased dike

1.0

hIR(0)

Figure 8. Comparison of experimental data for flows driven
by an excess source pressure to theoretical solutions. Solid
and dotted lines correspond to solutions for the density step
(equation (9)) and density gradient LNB, respectively.
Symbols denote experimental data for different positions of
the fluid front (2, 3, and 4 times the dike height for squares,
circles, and crosses, respectively).
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Figure 9. Experimental fluid-driven crack propagating in the presence of a topographic pressure gradient. Scale is
in centimeters. Dashed lines denote an isochrome corresponding to the crack thickness at the leading edge; it is
drawn based on an analysis of the color intensity of a digitized image. (2) Initial increase in the nose height is
evident when the crack propagates several dike heights. (b) Variations in the dike thickness at the top and botiom
edges (manifested in the shading intensity) suggest that the dike height is maximum at the base of the rnose.

thickness there. Because the fluid cannot be completely
withdrawn from the narrow dike tip on the timescale of dike
propagation {e.g.. Stevenson, 1982}, the strips with little
color intensity at the dike edges are interpreted as wetted
“wakes” of the advancing dike nose. (Note that equation (9)
allows for an instantanecous decrease in dike height because it
neglects the across-stream component of magma flow. This
flow becomes infinitesimally slow where the dike becomes
infinitesimally thin, which will preclude decreases in dike
height but which should not otherwise significantly affect the
flow evolution since only small volumes of magma are
affected.) It should be mentioned that the dike height is quite
constant along the tail in Figure 9b, which indicates that the
initial development of the “bulbous” nose seen in Figure 8a
was not due to local variations in the ambient stress field.
Similar results were obtained for a range of slopes. The fact

that downrift increases in dike height are not seen in the
photographs of the experiments of Fiske and Jackson [1972]
may be related to the (geologically unreasonable) attributes of
the horizontal stress distribution in their gelatin models, as
discussed in section 6.

At this stage we were interested in the gualitative behavior
of the flow and did not attempt to measure particular values of
the critical slopes corresponding to 2 transition from a
monotonically narrowing to an inflated dike nose. In part,
this is because of the experimental limitations imposed by the
requirement that the dike needs to be longer than ~ p, /G in
order to be essentially topography-driven. That is, given that
the maximum dike length is limited by the apparatus size, the
only way of producing topography-driven dikes for small
slopes is by reducing the source pressure p,. However,
observations become more problematic for small p, because
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variations in the ambient stress become nonnegligible
(compared with p,), and decreases in dike width resuit in the
increasing importance of surface tension relative to viscous
flow. Also, the dike height (as defined by the boundary
between wetted and unwetted regions) was found to be time-
dependent even for a constant excess fluid pressure. That is,
after rapidly reaching a quasi-constant value for a given
pressure at the dike center, the dike height continued to
diffusively increase with time, perhaps due to capillary effects.
For these reasons, visual identification of increases in dike
height may be quite cumbersome, as evidenced by Figure 9b,
and become more so as the overall thickness decreases.

5. Hints From Three-Dimensional Simulations

To further support our 2-D numerical and 3-D analogue
models, we performed some preliminary steady state
calculations for the dike nose using fully coupled 3-D elasticity
and 2-D fluid flow. Because of symmetry {we neglect the free
surface), we consider only the lower half of the dike, z20
(Figure 2). The computational domain consists of a dike nose
having length [, within which the dike height increases
monotonically from. zero to the constant “tail value,” and 2
portion of the dike tail having length bl, where b is a constant.

Note that b should be large enough such that the “upstream”

end of the computational domain (at x, =x, —{&+1){) resides
within the region where plane strain conditions are satisfied in
a vertical cross section. We normalize spatial coordinates with
respect to the half height of the dike tail 2=h(x,), {= z/ R
and E=(xy -x}/ h as before and introduce the effective
dynamic fluid pressure
BEL)=P(50)-(E+@+DA)y +Lv,
which is defined as the difference between the nondimensional
excess magma pressure (&, 8) = p(x,z)/ p(x,,0) (first term on
the right-hand side) and static contributions from the
dimensionless driving pressure gradient 7 {second term) and
dimensionless vertical gradient in the excess magma pressure v
(third term). For a dike propagating along 2 density step LNB
(the case to which we limit our attention in this section), the
static vertical fluid pressure gradient in (22) is v =const=—7/2
(equation (3)). At the upstream end (E=¢, =~(b+1)A), 2-D
elasticity and 1-D fluid flow are assumed to hold. This implies
2 uniform upstream boundary condition for the dynamic

pressure
?{éu > g} =1.

The finid dynamics is governed by the steady state continuity
equation

(22

@3)

V.(w3v;;}=-»;«w§-,i, @4)
o

where W(&,{) is the dike width normalized by (5) and the
product Y& represents the nondimensional nose velocity (¥
and & are defined in equations (6) and (7). The dike width
W(&, ) is related to the excess magma pressure B(E,0)
through 3-D elasticity,

WEL) =384 x.2)p(X, 2)dxdz . (25)

D

where D is the dike area and S is an appropriate Green’s
function. The problem is closed by specifying the initial dike
height profile 2(&) (in most calculations chosen based on the
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resuits of the physical modeling) and pressure distribution
P(&,€) and by the requirement of zero flux across the dike
perimeter and centerline (i.e., 4#(&) and the symmetry axis
{=0). The resulting system of equations was solved iteratively
for particular values of the of the governing parameter ¥ (the
ratio of the topographic pressure gradient to the vertical
gradient in the excess magma pressure). Equation (24) was
approximated by a second-order finite difference scheme. After
the excess magma pressure was updated from (22) and (24)
based on the current dike thickness, the new dike thickness was
calculated from (25) using 2 3-D boundary element method
[Rubin, 1992]. In order to reduce the degree of nonlinearity of
the problem, elements of the mesh along the dike perimeter
could be removed from the computational grid (i.e., if the
pressure was sufficiently low that interpenetration of an
element occurred at some iteration step), but no elements could
be added. Iterations were continued until the pressures
converged with a relative accuracy of 102 (note that
convergence criteria are more stringent for pressures than for
thickness because of the averaging effect of the integral
operator in equation (25)). Numerical experiments showed that
the final pressure and thickness distributions are independent
of initial conditions provided that the latter are reasonably
smooth. To prevent spurious oscillations along the upper edge
of the dike where W and ow/d¢ tend to zero as £ — 1, we used
values of v in (22) somewhat larger than ow/ol, which
effectively resulted in nonzero stress-intensity factors at the
dike top and bottom.

igure 10 shows the results of computations for y=0.2. As
can be seen, the nose develops increases in both the excess
pressure and dike thickness. Note that while the maximum dike
thickness occurs roughly at the junction between the nose and
the tail, the maximum in excess magma pressure is shifted
toward the leading edge. The same result was also obtzined in
the 2-D simulations described in section 3. Although the dike
height was not allowed to adjust to increases in the fluid
pressure, potential variations in dike height can be inferred
from the near-tip dike thickness, which is a proxy for the
siress intensity factor at the tip {e.g.. Lawn and Wilshaw,
1975]. Using this criterion, it is apparent from Figure 10b
that there is a tendency for local increases in the dike height
just behind the base of the nose. Maxima in both the excess
pressure and dike thickness disappear as 7 decreases.
Unfortunately, the computational task becomes prohibitive for

grid sizes less than 0.02 (ie., for more than ~50 grid points
along the dike height) and for b > 2 when 4 = 2 (i.e., for a dike
tail longer than two full dike heights). For this reason we were
not able to observe convergence of our solution with mesh

refinements. In the explored range of parameters, calculations
‘show that the magnritude of nose inflation (for fixed values of ¥

and b) tends to decrease with increasing resolution; however, it
increases with increasing values of b, The increase with b is
not surprising given that in Figure 10 the driving pressure
gradient due to topography is only twice that due to the excess
pressure. Note that steady state propagation implies an
asymptotic solution for arbitrarily large values of b;
consistent with this, in the numerical calculations, Jp/o¢ at
the upstream end of the dike tail decreases as b increases.
However, the precise amplitudes of the increases in excess fluid
pressure in the dike nose for supercritical values of 7 and the
critical value of 7, remain to be resoived. Another problem
that may be addressed in future work is the coupling of the dike
height to the excess fluid pressure. This can be done by
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introducing a fracture criterion and uniformly enforcing the
latter everywhere along the dike edge. The “true” shape of the
dike nose may ultimately be obtained from such a simulation.

6. Discussion

Near-tip excess pressure increases in laterally propagating
topography-driven dikes are in some ways analogous to those
in vertically propagating buoyant dikes {e.g., Spence and
Turcotte, 1990; Lister and Kerr, 1991]. For sufficiently tall
dikes ‘driven by magma buoyancy (analogous to sufficiently
long dikes driven by a topographic slope), there is a tail of
nearly constant thickness where the excess pressure is zero and
the flow is driven by Apg (analogous to a tail of nearly
constant thickness where the excess pressure is constant and
the flow is driven by p,g¢). In both cases an increase in the
elastic thickness at some distance behind the leading edge
decreases the pressure gradient upstream of that position and
increases the local excess pressure; this provides for an

.
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increased pressure gradient downstream of that position
capable of carrying the flow through the narrowing nose at the
velocity dictated by the tail. However, there are some
important differences.  For buoyancy-driven dikes the tail
thickness is controlled by the volume flux from the source and
elasticity is unimportant; for topography-driven dikes the tail
thickness is controlled by the excess source pressure and
elasticity. More fundamentally, for buoyancy-driven dikes the
increase in excess pressure stems from the necessity to
generate a positive dike thickness; if the pressure gradient
increased (and the excess pressure decreased) monotonically
from the tail to the tip in order 1o move the magma through the
narrowing nose, the excess pressure would be everywhere
negative. For topography-driven dikes the excess pressure in
the dike tail is positive, so the increased pressure near the nose
comes not from the need for 2 positive thickness but from the
need to compensate for decreases in the nose thickness
imposed by 3-D elasticity. Among other things, this
difference implies that while all buoyancy-driven dikes
possess a nose that is thicker than the tail, whether or not
topography-driven dikes do so depends upon the topographic
slope.

As indicated by our analysis, the critical along-strike slopes
at which increases in the excess magma pressure start to
develop near the dike leading edge are governed by the
dimensionless group 4p/p, or (p,R/p2g)’? in the case of
the density step and density gradient LNB, respectively (see
equations (19)-(21) and Figure 6). For subaerial rift zones, p,
essentially equals the magma density (~2600 kg/m®), while for
submarine zones p, is given by the density difference between
magma and seawater (~1600 kg/m®). Using Ap = 200 kg/m” as
a characteristic density contrast between the magma and host
rocks (corresponding, e.g., to rock densities of 2400 and 2800
kg/m3 above and below the LNB, respectively), from (21a) we
obtain critical slopes of 8% and 13% for subaerial and

Figure 10. Results of coupled elastic-hydrodynamic 3-D steady state calculations of the dike nose shape for y= 0.2.
(a) Profiles are of the excess pressure and dike aperture along the dike centerline. (b) Three-dimensional plot of the
dike. Shading denotes along-sirike variations in the dike thickness with respect to the thickness at the upstream end
where 2-D elasticity and 1-D fiow are assumed to hold, W(&,8)/(E,,{)~1. Relative increases in the dike thickness
are especially pronounced near the dike tip at the base of the nose, which implies local increases in the stress
intensity factor and a tendency for increases in the dike height.
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submarine rift zones, respectively. Critical slopes resulting
from the density gradient LNB may be a factor of 2-3 smaller;
using R = 0.05 kg/m* (corresponding, e.g., to a density
increase from 2350 kg/m® at the surface to 2850 kg/m’ at 2
depth of 10 km), and py = 2 MPa (consistent with typical dike
heights of several kilometers; see equation (4)), we obtain
critical values of 2% for subaerial and 3% for submarine rift
zones. The preliminary 3-D calculations suggest that the
critical slopes may be lower still. These values may be
compared with the observed slopes of basaltic shield
volcanoes worldwide [e.g., Fielder and Wilson, 1975, Figure
6.2]. - In Hawaii, subaerial rift zones are, on average,
characterized by along-strike slopes of a few percent
[Holcomb, 1987]. Mature submarine rifts exhibit remarkably
constant slopes of 7-8%, while the southern flanks of Mauna
Loa and Loihi seamount have very steep slopes of up to 20%
(see Figure 1). Although it might be tempting to interpret
these differences in terms of variations in the density structure
of these rift zones, it is noteworthy that the two submarine
volcanic rift zones characterized by the steepest along-strike
slopes also have abnormally steep across-strike slopes
[Fornari, 1987, Figure 5.4]. Large across-strike slopes result
in horizontal compressive stresses that at shallow levels
increase more slowly with depth than the vertical stress

[Dieterich, 1988]. This implies larger values of the effective ‘

4p or p, than would be produced by density contrasts alone, as
the effective Ap or p, are determined by the difference between
the magma pressure and the dike-perpendicular stress. From
(21), these increased values of 4p or p, would indeed give rise
to larger critical along-strike slopes.

Because the gelatin models used in the experiments of Fiske
and Jackson [1972} had very steep across-strike slopes (75%,
which is a factor of 4 steeper than typical across-strike slopes
in Hawaii), a very large critical along-strike slope in their
experiments may be expected. Finite element calculations of
Dieterich [1988] indicate that the experimental geometry of
Fiske and Jackson gives rise to a horizontal stress that is
independent of {(or even decreases with) depth in the upper part
of their gelatin “ridge” [Dieterich, 1988, Figure 6]. This
implies that the vertical gradient in the excess fluid pressure is
essentially given by the hydrostatic pressure gradient in the
fluid, in which case (21) gives rise to a critical slope of O(1).
Note that because expressions (21) were obtained under the
assumption ¢ << 1, they cannot be used in the limit of steep
slopes. Extension of the analysis presented in sections 2 and
3 for an arbitrary slope indicates that the critical along-strike
slopes in the experiments of Fiske and Jackson {1972} should
be of the order of 45° or more, greatly exceeding the siopes
they used. This may explain why dikes in their experiments
did not exhibit downslope increases in the dike height.

Variations in across-rift topography may also bear on the
origins of breaks in the along-strike slopes of volcanic rift
zones. For example, our model predicts a break in slope at the
passage of a subaerial to a submarine volcanic rift zone due to 2
step change in differential density p, (see equations (21)); for
p, changing from 2600 to 1600 kg/m® as the dike propagates
from a subaerial to a submarine rift, the expected increase in
the critical slope is a factor of 2.6/1.6~1.6. The observed
break in slope, for example, from the Kilauea East Rift Zone to
the Puna Ridge is about a factor of 3 (from 2.5 to 7-8%),
substantially larger than is predicted. This discrepancy could
be explained by the fact that the subaerial East Rift Zone of
Kilauea is essentially a one-sided ridge buttressed by Mauna
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Loa on the north, while its submarine continuation is more
symmetric, with well-developed slopes on both sides.. The
“mass deficiency” produced by the across-strike topography is
likely to give rise to a horizontal stress that increases more
slowly with depth, which, as discussed above, would increase
the critical slopes compared with models in which the LNB was
generated by density contrasts alone.

The analysis above indicates that the critical slopes of
volcanic rift zones are independent of magma viscosity and the
elastic modulii of the host rocks (see equations (21)). These
results apparently contradict a well-established relation
between magma composition and the morphology of major
terrestrial volcanoes (e.g., silicic volcanoes are known 1o have
generally steeper slopes than their mafic counterparts). Note
that even though differences in magma viscosity do not affect
the overall dynamics of the model presented, they do affect the
timescales involved. This is suggestive of the importance of
thermal controls on magma emplacement [Delaney and
Pollard, 1982; Fialko and Rubin, 1998]. Thermally limited
magma emplacement may be partly responsible for why silicic
volcanoes do not develop volcanic rift zones in which magma
is transported laterally in dikes. Instead, steep (50% and more)
slopes of andesitic stratovolcanoes are believed to be
controlled by the angle of repose of the pyroclastic material
comprising the bulk of the volcanic edifice [e.g., Bullard,
19841, ‘

We point out that the results of both the physical and
numerical modeling indicate that potential downrift increases
in dike height (and thus the increased tendency for dikes to
erupt) may be rather small (of the order of a few percent of the
dike height). Under in situ conditions, these effects could be
dwarfed by the presence of reasonable along-strike
inhomogeneities in the dike-perpendicular stress. If so, the
latter might dictate where eruptions occur during individual
diking events (even though the long-term eruptive behavior
could still be controlled by the mechanism discussed above).
However, other physical aspects of lateral dike propagation
(omitted from our models) may enhance the tendency for
downrift eruptions. First, we did not consider the effect of the
free surface, which is expected to become substantial for dikes
whose depth is comparable to their height. Elastic solutions
for 3-D blade-like cracks demonstrate that the free surface is
more effective at increasing the thickness in the dike tail than
at the leading edge [Shah and Kobayashi, 1973]. Because of
the dependence of flow velocity on square of the dike
thickness, this would increase the flux within the dike tail
more than within the nose, thus increasing the nose pressure
necessary to carry away the magma delivered by the tail.

Second, we assumed that the rock fracture resistance is zero.
This assumption is justified provided rock fracture energies
measured in the lab are applicabie to rock failure at depth [e.g..
Lister and Kerr, 1991]. However, as pointed out by Rubin
{1993] and Fialko and Rubin [1997], field observations of
large process zones and dike-induced seismicity, as well as
experiments performed under in situ stress conditions, suggest
substantially larger fracture energies than those deduced from
zero-pressure laboratory tests. If the rock fracture resistance is
significant, propagation of the dike nose will be impeded,
which implies a stronger tendency for pressure buildup and
local increases in the dike height. Note that in the limit of
very large rock fracture toughness (such that viscous forces are
negligible), the equilibrium dike shape would reflect an
essentially hydrostatic increase in the excess magma pressure
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from the source to the leading edge. Such “high toughness”
behavior was observed in one series of analog experiments in
which the rubber membrane adhered to the Plexiglas sheet.

Third, we neglected thermodynamic aspects of magma flow.
Effects of temperature-dependent magma rheology on viscous
pressure losses in topography-driven dikes are potentially
profound. As suggested by McConnel [1967] and Fujii and
Uyeda [1974], basic dikes driven by pressure gradients of
0(10%) Pa/m and having thicknesses greater than ~! m may
experience a “thermal runaway” in which 2 positive feedback
occurs between an increasing magma flux and a decreasing
magma viscosity due to shear heating (viscous dissipation).
The onset of thermal runaway in topography-driven dikes
might result in downrift decreases in the excess fagma
pressure (and dike cross-sectional area) in order to offset
increases in magma flux due to decreasing magma viscosity
(“shear thinning”). However, calculations employing realistic
magma rheologies and allowing for phase transitions indicate
that for reasonable geological parameters thermal runaway is
unlikely to occur in dikes that are thinner than ~2.5 m
(upublished resuits by the authors). This condition is satisfied
for the majority of dikes in Hawaiian rift zones {Pollard et al.,
1983; Knight and Walker, 1988], and therefore we conclude
that the temperature-dependence of the flow dynamics is likely
dominated by conductive cooling.

Magma cooling and freezing are expected to be most
pronounced where the dike is thinnest, i.e., at the dike top and
bottom and near the dike leading edge. Near the dike leading
edge, freezing may affect the overall flow dynamics by
reducing the nose thickness and thus slowing down the magma.
As illustrated by the 2-D calculations of Fialko and Rubin
[1998, Figure 11], when the dike is on the verge of thermal
arrest, the magma flow is blocked first near the dike tip (even
though the chilled margin thickness is minimum there). If
blockage is strongly concentrated near the tip, the effects of
magma freezing on the excess magma pressure would be
analogous to 2 high fracture toughness, i.e.; increases in
height may be encouraged toward the leading edge of a dike.
Similar effects may be produced by near-tip increases in magma
viscosity, for example, due to cooling and/for volatile
exolution into the tip cavity (a low-pressure region ahead of
the moving magma front). In order to quantify these effects,
however, full interaction between magma freezing and flow
dynamics must be considered. Finally, we would like fo
emphasize the possibility that magma freezing may in fact
govern temporal and spatial variations in the horizontal
stresses along the rift. This stems from the fact that most rift
zones have horizontal extents that are of the order of the
thermal arrest distances of laterally propagating dikes [Fialko
and Rubin, 1998]. Following freezing near the leading edge of
a topography-driven dike, continued flow behind the leading
edge may produce a nearly hydrostatic increase in the
horizontal stress that would be “frozen in” upon complete
solidification.  The next dike might respond to this along-
strike increase in the dike-normal stress by erupting uprift of
the termination of the previous dike. This cycle may be
continued uprift until compressive horizontal stresses along
the rift zone are relieved by some tectonic mechanism [e.g.,
Dieterich, 1988]. In this case, the positioning of the eruption
sites, and in the long term the along-rift topography, would be
controlled by some complex interaction between the fluid
dynamics of dike propagation, magma freezing, and variations
in the dike-perpendicular stress that have some “memory” of
the previous volcanic episodes.
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7. ‘Conclusions

We considered the dynamics of viscous pressure losses in
lateral dikes propagating in the presence of small along-strike
topographic slopes.  Dikes that are shorter than the
transitional length of O( p,/G), where p, is the excess magma
pressure at the source and G is the driving pressure gradient due
to topography, are driven mostly by the excess pressure and
are tallest near the source. If the source pressure is sufficient
for magma to reach the surface, such dikes are most likely to
erupt near the source. Longer (essentially topography-driven)
dikes may erupt anywhere along their length for small enough
slopes. For sufficiently large slopes, a topography-driven
dike may develop an increase in the excess magma pressure
near the leading edge (“nose”), as a.result of the 3-D nature of
the elastic deformations. This, in principle, may result in a
local increase in dike height, thus favoring downrift eruptions.
Such behavior implies the existence of a critical along-rift
slope at which dikes propagate in equilibrium with the slope
(i-e., maintaining it in the long term by preferentially
choosing where 10 erupt). We presented 2-D and preliminary 3-
D solutions for the coupled fluid-mechanical/elastic problem in
which the dike nose is assumed to propagate at steady state at
the velocity dictated by the flux from the dike tail. We also
performed physical analog experiments simulating lateral dike
propagation along the level of neutral buoyancy in the
presence  of  along-strike topography. Our results have
confirmed the possibility of increases in both excess magma
pressure and dike height for supercritical slopes. Our estimated
values of critical slopes are in general agreement with
observations of volcanic rift zones in Hawaii. Quantitative
application of these results to specific geological examples is
complicated by processes that we have not explicitly
considered (e.g., lateral variations of the horizontal tectonic
stress and magma freezing). Nonetheless, the observation that
lava flows in Hawail flow essentially perpendicular to the rift
zones indicates that the dynamics of lava freezing cannot
explain the observed constancy of along-rift slopes. Our
results suggest that these slopes could result from viscous
pressure losses within laterally propagating dikes.

Appendix

Consider a steadily propagating two-dimensional elastic
crack having length [ (of the order of the half height of the dike
“tail;” see Figure 2) filled by a fluid that enters the crack under
fixed excess pressure p,. Flow in the crack is driven by the
viscous pressure drop in the fluid and by 2 constant external
driving pressure gradient G (e.g., due to gravity). Let x be the
along-crack coordinate with the origin at the crack base. The
crack profile w(x) is governed by the distribution of excess
pressure p(x) within the crack,
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where M is elastic stiffness (see text). Strictly speaking, (Al;
is applicable to the symmetrically loaded 2-D crack in an
infinite body (with symmetry about x = 0). The pressure
distribution p(x) inside the crack is determined by viscous
pressure losses in the fluid and by the exolution of volatiles in
the tip cavity (the region behind the crack tip ;< x <[ where
the fluid does not penetrate because of the large viscous
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pressure drop along the narrowing crack aperture, l¢ being the
position of the fluid front within the crack). The cross-
sectionally averaged equation of mass continuity gives rise to
the following expression for the driving pressure gradient in
the fluid:

dp 3nu
L _G=-—imee A2)
dx w? () ;

where 77 is the fluid viscosity and ., is the nose velocity.
Equation (A2) states that the average fluid velocity is constant
and equals u,,, in every cross section along the crack,
consistent with the assumption of steady state propagation.
Assuming that the intrinsic rock strength is negligible [e.g.,
Lister and Kerr, 1991}, equilibrium conditions provide an
additional constraint on the pressure distribution within the
crack,

!
- =0. (A3)
0
Natural boundary conditions at the nose entrance and at the
magma front are

pX=p, atx=0 px)= -p, for l,<x<i, (Ad)

where —p, is the tip suction [see, e.g., Rubin, 1993].

System (A1)-(A4) was nondimensionalized using ! as the
length scale X, p, as the pressure scale p, Ip, / M as the width
scale W ,and Ip /3nM* as the velocity scale 4,

¥2 2
) )
=2 B —— - #zg,b(s)ds. (AS)
Y -7 =
iii 2) 1=
—d-Z—D-—I‘:—TUW’ =£Z. (A6)
dx @*(%) o,
1 P(y)d;
§!—<@q=0, (A7)
*(1-7)
P(O)=1; P(p=-F for z,<y<1, (A8)

where y =x/X, @ =w/W is the nondimensional elastic crack
thickness, P=p/p is the nondimensional fluid pressure,
Us=u,,/% is the nondimensional nose velocity, and Xy is
the dimensionless position of the fluid front (0< X <1).
System (AS5)-(A8) was solved simultaneously for the pressure
distribution P(y), crack thickness w(y), velocity U, and
position of the fluid front x . using iterative techniques for a
range of values of I. The fluid pressure distribution was
approximated by 200 segments along the crack in which the
pressure was assumed to vary piecewise linearly. The
dependence of the nondimensional crack velocity U on the
dimensionless driving pressure gradient I' and tip suction P, is
shown in Figure 4 in the main text.

Notation

D dike area in steady state 3-D simulations (equation
(25)) (md.
driving pressure gradient due to topography (equation
1) (Pa/my”

M host rock elastic stiffness, M = ;,c/ (E-—v) (Pa).

P nondimensional excess fluid pressure.

8NXQ < €Wl
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nondimensional excess fluid pressure in tip cavity.
host rock density gradient (kg/m®).
nondimensional dike thickness in vertical cross
section.

dike volume (m®).

nondimensional nose velocity.

dummy integration variable (equation (25)).
dummy integration variable (equation (25)).
exponent specifying dependence of dike volume V on
time ¢, V~2¢, in model of Lister [1990].
nondimensional length of dike tail (in units of dike
nose length /) in 3-D simulations.

gravitational acceleration (m/s).

dike half height (m).

dike height scale (equation (8)) (m).
nondimensional dike half height.

dike half height at the source (x=0) (m).

asymptotic value of U/aI” for I'> 1 (Figure 4).
dike nose length (Figure 2) (m).

position of magma front within dike nose (m).
excess magma pressure (Pa).

excess magma pressure scale (Pa).

nondimensional excess magma pressure (equation
(22)).

nondimensional dynamic magma pressure {equation
22)).

excess magma pressure at the source (x=0) (Pa).
excess magma pressure at the base of dike nose (Pa).
excess fluid pressure in tip cavity (Pa).

excess magma pressure in dike tail at LNB (equations
(3) ancé (4)) (Pa).

dummy integration variable {equation (Al)).

time (s).

time scale (equation (8)) (s).

nondimensional time.

velocity of steady-state 2-D dike nose (equation (12))
(m/s).

average magma velocity in 2-D dike tail (equation
(13)) (mvs).

magma velocity scale (m/s).

dike half width (m).

dike width scale (m).

nondimensional dike width in 3-D simulations.
dike half width at the base of dike nose (equation
(18)) (m).

dike half width at LNB (equation (5)) (m).
along-strike coordinate (m).

along-strike coordinate scale (m).

nondimensional along- strike coordinate.

position of upstream end of computational domain in
3-D simulations {(m).

dike length (m).

nondimensional dike length.

vertical (with respect to LNB) coordinate (see Figure
2) (m).

nondimensional vertical coordinate.

ratio of driving pressure gradients due to topography
and excess magma pressure.

along-strike topographic slope (radian).
nondimensional along-strike coordinate in 2-D dike
nose.

position of fluid front in 2-D dike nose.
nondimensional dike thickness at LNB (equation (5)).
ynamic magma viscosity (Pa s).
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7 ratio of driving pressure gradient due to topography
to vertical gradient in excess magma pressure.

Y3 nondimensional dike nose length (equation (i35)).

M host rock shear modulus (Pa).

v host rock Poisson’s ratio.

o2 density difference between magma and air (for
subaerial rift zones) or seawater (for submarine fift
zones) (kg/m’).

On magma density (kg/m®).

o host rock density at LNB due to density gradient
(kg/m®).

4p density contrast between magma and host rocks at
LNB due to density step (kg/m).

v nondimensional vertical gradient in excess magma
pressure in dike tail (for density step LNB).

@ nondimensional average magma velocity {equation
.

nondimensional half width of 2-D dike nose.
nondimensional along-strike coordinate in reference
frame of moving magma front, =X ——EN{ ?} .
g, nondimensional position of upstream end of
computational domain in 3-D steady-state

simulations, &, =—(b+1)A.

g

¢ nondimensional vertical coordinate in 3-D
simulations.
S Green’s function (eguation (25)) (s¥kg).
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