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Thermodynamics of lateral dike propagation: Implications
for crustal accretion at slow spreading mid-ocean ridges
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Abstract. We consider solidification of hot fluid flowing through a rigid-wall channel of
infinite extent. The calculated “thermal arrest” lengths are used to investigate the role of magma
freezing in limiting the propagation distance of lateral dike intrusions. Our results demonstrate
that for reasonable parameters the propagation distances of meter-wide dikes do not exceed the
wavelength of crustal thickness variations or transform fault spacing along slow spreading ridges.
This suggests that thermal controls on the crustal melt delivery system could be an important
factor in modulating these variations. Unlike published results for a finite channel, which predict
unlimited meltback of the channel walls if the prefreezing fluid velocity exceeds some critical
value, any flow into an infinite channel will eventually freeze, provided that shear heating in the
magma is negligible. The thermal arrest distances depend strongly on the average dike thickness A
(e h* for dikes driven by an along-strike topographic slope and o A2 for dikes driven by an
excess source pressure). Thermal erosion of the country rocks associated with lateral dike
intrusions is likely to be confined to a very small region near the magma source. Substantial
correlations between the along-strike bathymetry and geochemistry of the erupted lavas along
individual ridge segments may be consistent with high-level basalt fractionation in the laterally

propagating dikes.

1. Introduction

It is generally recognized that tectonics and magmatism at
constructive plate margins are intrinsically coupled. One
well-known illustration of this is the strong modulation of the
rate and mode of magma supply to the mid-ocean ridge (MOR)
axis by the spreading rate. Thus mantle flow beneath fast
spreading ridges is believed to be mainly two-dimensional,
and the magma supply is robust and crustal magma chambers
may exist over the whole length of ridge segments [e.g.,
Sleep, 1975; Detrick et al., 1987]. As a result, a well-
developed gabbroic layer (layer 3) is present in the crust along
most of the ridge axis and along-strike variations in crustal
thickness and topography are rather small. This seems to be
the case for most of the East Pacific Rise (EPR) [Lin and
Phipps Morgan, 1992]. In contrast, slow spreading ridges
(such as most of Atlantic, Indian and Antarctic Ridges) are
characterized by distinct magmatic and morphologic
segmentation having a spatial wavelength of the order of 50
km [Schouten et al., 1985; Dick, 1989].

Observational data characterizing typical slow spreading
ridge segments can be summarized as follows. Magmatic
centers are located roughly in the middle of ridge segments and
are marked by topographic highs; typical segment half
lengths are 15-35 km, and along-axis elevation drops from the
central high to adjacent transform faults are of the order of 1
km [Francheteau and Ballard, 1983; Neumann and Forsyth,
1993]. Along-axis topography is inversely correlated with
Bouguer gravity anomalies, which suggests a direct
correlation between the surface topography and crustal
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thickness [Lin et al., 1990]. Along-axis thinning of the
oceanic crust away from the central high has been also inferred
from seismic [Mutter et al., 1985; Tolstoy et al., 1993] and
petrologic [Dick, 1989] data. At the same time, the thickness
of the lithosphere, which is usually associated with the depth
of some particular (~600°C) isotherm, is believed to increase
toward the bounding transform faults. These along-strike
variations are commonly ascribed to essentially three-
dimensional quasi-regular asthenospheric upwellings
[Whitehead et al., 1984; Lin and Phipps Morgan, 1992].
While focused mantle upwelling may be a plausible cause of an
increase in lithospheric thickness off of the upwelling center,
shallow processes (e.g., magma migration within the
lithosphere) may be important in producing the observed
correlation between crustal thickness variations and
segmentation pattern.

It has been suggested that crustal thinning is related to the
along-strike thermal structure of ridge segments [e.g., Lin et
al., 1990], although the particular mechanisms of such
thermal control are poorly understood. It is often assumed that
melt transport at ridges is predominantly vertical and that the
local crustal thickness reflects the accumulated thickness of
magma extracted from a vertical cross section perpendicular to
the ridge at that location [Lin and Phipps Morgan, 1992;
Cannat, 1996]. At the same time, it has been proposed that
crustal accretion at magma-starved mid-ocean ridge segments
involves significant downrift melt transport from the central
magma chamber via dikes and sills [e.g., White, 1989;
Bloomer et al., 1989]. Lateral dike propagation has been well
documented by the observations in Iceland, in Hawaii, and on
the Juan de Fuca Ridge [Einarsson and Brandsdottir, 1980;
Klein et al., 1987; Fox et al., 1995]. If the role of lateral
transport in the total magma budget of slow spreading ridge
segments is significant, then the thermal viability of dikes is
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likely to be a major factor controlling the observed along-axis
variations in crustal morphology. In this case, magma
freezing during downrift flow could be responsible for the
observed thinning of the ocean crust, either directly by
limiting the magma supply or indirectly by allowing for
tectonic thinning in the absence of magma input. However, it
remains enigmatic why magma should have difficulty reaching
the ends of small segments on a slow spreading ridge, which
requires lateral propagation of some 15-20 km, while
traveling up to 100 km along the Juan de Fuca Ridge [Dziak et
al., 1995] and in volcanic rift zones of Iceland and Hawaii
[Sigurdsson and Sparks, 1978].

The role of magma freezing in limiting dike propagation
distance has been addressed previously but not in the context
of laterally propagating dikes. Delaney and Pollard [1982],
Bruce and Huppert [1990], and Lister and Dellar [1996]
considered constant-pressure-drop flow through a slot of
specified thickness from a shallow magma source to the
surface. While Delaney and Pollard [1982] postulated a priori
that the solidification front always moved toward the dike
center, Bruce and Huppert [1990] and Lister and Dellar [1996]
included the possibility of melting the dike walls (meltback)
in their models and found that thermal runaway (i.e., an
infinite thermal erosion of the channel as long as the magma
supply lasts) takes place in even relatively thin dikes (having
thickness of ~1 m). This result is somewhat puzzling in that
ample field data do not suggest any signs of meltback for such
(and many thicker) dikes. The more recent solution of Lister
and Dellar [1996], which is the only one of the above to solve
the complete equations for the advection and diffusion of heat,
might be expected to underestimate freezing if applied to
laterally propagating dikes because of the following
assumptions: (1) cooled magma simply flows onto the surface,
instead of remaining in the dike channel where it may further
impede the flow; (2) magma is emplaced in a finite-length
channel instantaneously or on a timescale that is much shorter
than the subsequent solidification; and (3) the thinner region
near the propagating dike tip is absent. Lister [1994a,b]
presents another analysis for vertically propagating dikes in
which the dike walls are considered to be perfectly flexible. In
this model, the flow is governed by the balance between

Figure 1.
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buoyant and viscous forces and elasticity is neglected, so the
dike walls respond passively to mass balance of the flow. The
free deformability of the boundaries allows the chill to be
displaced laterally and flow to continue if sufficient flux is
arriving from the source [Lister, 1994b]. This assumption is
not appropriate for laterally propagating dikes in which the
thickness is constrained by elasticity everywhere.

In this paper we determine the thermal arrest length of
laterally propagating dikes by considering time-dependent
fluid flow in a rigid-walled channel of infinite extent, in which
the phase transition between liquid and solid is assumed to
occur at a specified temperature. In our calculations we
explicitly incorporate a topographic (gravitational)
component of the pressure gradient driving the flow, which, as
we show below, may provide the dominant driving force for
many mid-ocean ridge dikes. While the models discussed
below are most obviously applicable to laterally propagating
dikes fed by a shallow chamber, they are also applicable to
dikes that rise directly from the mantle and begin to spread
laterally within the crust. Such behavior has been shown
experimentally and is predicted theoretically when the dike
reaches either the level of neutral buoyancy (if the least
horizontal compressive stress is essentially equal to the
vertical stress; e.g. Ryan [1987]; Lister and Kerr [1991]), or a
rheologically-controlled level such as the brittle/ductile
transition (if the horizontal stress is modified significantly by
tectonic extension [e.g., Rubin, 1990, 1995].

2. Preliminaries

We start by considering the behavior of a fluid-driven crack
in the presence of a small topographic slope and a constant
excess pressure p at the source (the excess pressure is defined
as the difference between the magma pressure and the ambient
dike-perpendicular stress). Figure 1 shows a schematic view of
a dike driven by the release of an incompressible melt of
density p,, from a source (origin in Figure 1) embedded in a
stratified elastic half-space. The surface of the half-space is
inclined by an angle o with respect to horizontal. Following
Rubin and Pollard [1987] and Lister [1990], we assume that the
level of “neutral buoyancy” (LNB) for the fluid tracks the half-

Schematic picture of a dike tracking the level of neutral buoyancy (LNB) in the presence of a small topographic

gradient. Far froim the nose the excess magma pressure approaches a constant value p. For simplicity we assume that the excess
magma pressure in any vertical cross section varies linearly and symmetrically about the dike centerline (x axis in Figure 1). For
the density-controlled LNB (i.e., in the absence of any deviatoric tectonic stress) this assumption implies a density contrast
between the magma and the host rocks Ap =(p2 - pl)/2, where p, and p, are the density of the solid above and below the LNB,
respectively, and a magma density p,, such that p, >p, >p, and |p, - pml =p, —P,,- In this case, the dike width is maximum in

the horizontal cross section z=0 [e.g., Lister, 1990].
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horizontal stress

depth

S}, controlled by the
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Figure 2. Two distributions of the least horizontal stress S,
capable of giving rise to laterally propagating dikes. For S, =
S, (solid line), dike is trapped at the level of neutral buoyancy
(1). For S, controlled by the rock strength in a region
undergoing amagmatic extension (dashed line), the depth of
“effective neutral buoyancy” becomes the brittle-ductile
transition (2). The excess magma pressure is given by the
difference between the magma pressure (P,,) and S, curves.

space surface at a constant depth H. We put neutral buoyancy
in quotes because the “effective” LLNB is actually controlled by
the difference between the vertical gradients in the hydrostatic
magma pressure (dP,,/dz) and the ambient lithostatic stress
(dS;, /dz, see Figure 2). Hereafter by LNB we imply the depth

at which the difference dP,, /dz-dS,/dz changes sign, and by

Ap we imply the effective density contrast between the
magma and the host rocks that implicitly includes the effects
of the vertical gradients in the regional (tectonic) horizontal
stress. Note that compressive stresses are assumed to be
positive.

In the lateral dike propagation model of Liszer [1990] and
Lister and Kerr [1991], which neglects thermal effects, dike
growth is driven by the localized influx of magma at a
prescribed rate Qtﬁ, where ¢ is time and 8 is a numerical
coefficient (a constant source pressure boundary condition is
obtained by putting 8 =1/2). Magma flow is presumed to be
purely horizontal, and the dike height and thickness profile in
any vertical cross section are approximated as being due to the
distribution of excess magma pressure in that cross section
alone. The lateral flow is driven by the drop in excess magma
pressure from the source to the downrift nose of the dike. Thus
the dike height and thickness decrease toward the nose, and the
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pressure gradient for magma flow (and hence the dike velocity)
decreases as the dike length increases. Both the decrease in
thickness and velocity would enhance magma freezing.
However, the along-strike slopes of many volcanic rift zones
are sufficient to drive dike propagation at velocities close to
those observed (e.g., 0.3 m/s for a dike 1.5 m thick and a
magma viscosity of 100 Pa s for the 1% slope along the
CoAxial segment of the Juan de Fuca ridge), even without
along-strike variations in the excess magma pressure. This
suggests that models of lateral dike propagation should
account for the fact that the dikes are essentially running
“downhill”.

The importance of topographic slope in driving lateral
magma flow in dikes is readily demonstrated. Coupled elastic-
hydrodynamic models of fluid-driven fracture indicate that in
the absence of gravity, the pressure gradient driving the flow
is of the order of the excess pressure at the magma source,
p(0), divided by the dike length xy (Figure 1) [e.g., Spence and
Turcotte, 1985]. If the LNB maintains a constant depth
beneath the surface, the driving pressure gradient due to
gravity will be G=p,gsino for a subaerial rift and
(P —p,)gsina for a submarine rift, where p,, is seawater
density. Comparing these pressure gradients, we find that the
driving pressure gradient due to submarine topography
dominates the flow when xN>p(0)/((pm —pw)gsina).
Taking p(0) = 5 MPa as a typical estimate of the excess
pressure at the source (see section 2.1), p,, ~2600 kg/m’, and
0~1-3% as characteristic of along-strike slopes along ridge
segments [e.g., Neumann and Forsythe, 1993, figure 2]), this
requires lateral propagation distances of only 10 to 30 km.
This is a small fraction of inferred dike propagation distances
in Iceland, in Hawaii and on the Juan de Fuca ridge, and it is
also less than the half length of many ridge segments along
the Mid-Atlantic Ridge (MAR). Thus for long dikes the
topographic slope may provide a substantially larger pressure
gradient for flow than does the excess source pressure.

Note that for a dike following a topographic slope, gravity
can drive the flow while the excess pressure that dilates the
dike remains constant. It follows that in the absence of
freezing, a dike driven by a constant topographic slope could
maintain a constant thickness along any cross section parallel
to the x axis (excluding the nose region where the 3-D
elasticity effects would narrow the dike aperture over distances
of the order of the dike height behind the dike tip). For
simplicity, we replace the elastic fissure with a rigid parallel-
wall slot of initially constant thickness 24 (Figure 3). Thus
we neglect the elastic response of the dike walls to
modifications in the fluid pressure due to freezing and viscous
pressure losses and any variation in dike thickness with depth.

\K chilled margin m(x,t)

2 w(x,t)

”yt> | 2h

Uy

x,(t) (fluid front position)

Figure 3. A parallel-wall channel of initial width 24 having infinite extent in positive x direction is filled by hot fluid injected
atx = 0. Geometry of the fluid-occupied portion of the channel is governed by crystallization/melting at the phase boundary.
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We treat the flow as being driven by a combination of a drop
in excess magma pressure from the source to the fluid front,
AP, and a pressure gradient due to topography, G. The
relevance of this problem to laterally propagating dikes is
considered further in section 5. We proceed with the
identification of important physical scales relevant to the
fluid-mechanical and thermodynamic parts of this problem.

2.1. Pressure Scales and Fluid Dynamics

Since in our model the magma conduit is considered to be
rigid-walled, we are interested in values of the excess magma
pressure p only insofar as they may allow one to estimate
reasonable values of AP. For a sufficiently long dike
(xy >>1, where | is the dike half height), plain strain
conditions will be satisfied in any cross section perpendicular
to the x axis except near the dike nose (leading edge, see
Figure 1). It follows that given the pressure distribution
within any vertical cross-section, the dike shape in that
cross-section is governed by two-dimensional elasticity.
Given that the excess magma pressure in any vertical cross-
section is the sum of the excess pressure at the dike center p
and a piecewise linear hydrostatic pressure Apgzcos & , where
Ap is negative above the LNB and positive below (Figures 1
and 2), one can find the dike height 2/ and the maximum dike
width 2k using analytical solutions for.a 2-D elastic crack in
an infinite body [e.g., Lister, 1990; Khazan and Fialko,
1995]:

Dike half height [ =Z__ P %)
2 Apgcoso
. . 1p
Dike half thickness i === 2
2M

In (2), M is elastic stiffness, M= u/(1—v), where 1 is shear
modulus and v is Poisson’s ratio. Estimates (1) and (2) are
obtained assuming that the excess pressure distribution is
linear and symmetric with respect to the LNB and that the
stress intensity factors at the upper and lower crack tips equal
zero. A typical width of basaltic dikes in the volcanic rift
zones of Iceland and Hawaii as well as in exposed ophiolite
complexes is of the order of 1 m [Gass, 1989]. Taking M=10
GPa and Ap=300 kg/m® as representative values for the
oceanic crust [e.g., Rubin, 1995], from (1) and (2) we find that
a 1 m thick dike should have an excess pressure p of the order
of 4 MPa and a (full) height of the order of 4 km.

Estimates of the Reynold’s number for the magma flow
based on observed dike thicknesses w~O(1 m) and propagation
velocities #~0(1 m/s) indicate that for typical values of the
dynamic viscosity of basic melts, 7 ~0(10? Pa s), magma flow
in laterally propagating dikes is laminar and can be analyzed
using lubrication theory [e.g., Bruce and Huppert, 1990; Lister
and Kerr, 1991]. The dike is essentially narrow so that the
dike walls can be considered as locally parallel. Then the
along-stream component of the fluid velocity in any
horizontal cross section is given by planar Poiseuille flow

= =2 (- yz)(éa_

2n Ew ) (hlsw)

where 2w is the local dike aperture available for flow, dp/dx
is the gradient in excess pressure, and G is the driving pressure
gradient due to topography. For the problem shown in Figure
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3, u, =0 and the only nonzero cross-stream component of the
fluid velocity u, can be obtained from (3) using the local
condition of continuity divu =0,

2 2
A | NN i P4 2
uyh—ani[w 3 Jaxz taw Rx(ax )] “@

(assuming that dG/dx =0). The fluid-mechanical part of the
problem is closed by the equation of mass conservation
2 9h__ 91
ot ox

In (5), h is the mechanical half-opening of the channel and g is
the local volumetric flux,

()

3
q=2wii, = —3—(‘9—’1— G) , (6)

where u, is the cross-sectionally averaged along-stream
velocity. Note that & can be written as a sum of the local
channel half aperture w and the thickness of the chilled margin
m, h(x,t)=w(x,t)+m(x,t). For the rigid-wall channel,
"Ohfdr =0 and from (5) it follows that at any time the flux g
should be constant everywhere along the channel. In this
case, combination of (4) and (6) gives rise to the following
relation between u, and u,:
y ow
u, = o u, . @)
The total viscous pressure drop available to drive the flow is
the sum of that due to the drop in excess pressure AP and that
due to topography, '

—f(;i—G)dx: AP+Gx,y . ®)

0 X

The local driving pressure gradient is related to the global
volumetric flux as dp/dx—G=-1.5ng/w> (equation (6));
substituting this into (3), (7) and (8), we find that the fluid
velocity in the channel may be written as

3 w?—y? ow
u={”x’"y}=zwwsy Q(f){l,v); Bx} ) (C)]

where the global volumetric flux g(¢) depends on the fluid
viscosity, the total pressure drop driving the flow and the
channel geometry:

_%_AP+GxN(t) (10)

= 37’] xy(t) dx
o W(xr)

q(z)

The channel geometry is governed by the processes of
solidification and/or melting concomitant with the magma
flow. In essence, the above approach is an extension of the
formulation of Lister and Dellar [1996] to the case of flow in a
semi-infinite channel.

2.2. Heat Transfer

.We suppose that the magma and the host rocks are
indistinguishable except by phase. This assumption is
reasonable for basalts intruding oceanic crust. Typical
thermophysical parameters for basalts that will be used
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throughout this paper are thermal diffusivity x=10" m? s ;
solidus temperature 7', =1150°C, heat capacity ¢ =1 kJ kg
°C™' and latent heat of crystallization/fusion L=500 kJ kg
[e.g., Rubin, 1995]. We assume that the magma enters the
channel at uniform temperature 7, (7, >7,) and that the
initial host rock temperature is T,. Scaling arguments
suggest that the thermal transport problem can be
parameterized in terms of two dimensionless numbers [Bruce
and Huppert, 1990; Lister, 1994a], which we choose to be

Stefan number S= L {1l
(T, -To)
. . . T, -T
Dimensionless solidus temperature @ = T‘ TO (12)
~lo

Early studies of the thermal effects of dike propagation [e. g,
Fedotov, 1978; Spence and Turcotte, 1985] were restricted to

calculations of the ¢

u:ugm, which pllyblhdlly
represents the distance at which the incoming fluid has lost
essentially all of its heat to the surroundings. Tt may be
calculated as the product of a characteristic solidification time
for a stationary fluid and an average velocity of the fluid in the
absence of freezing. The estimate of the static solidification
time for a parallel-walled channel of thickness 2k is given by

- h?
t =
422K

where h’/x is a characteristic diffusion time and A(S,0) is

given by [Carslaw and Jaeger, 1959]

-2 e 1—@]
e [erfc(—l) erfc(d) |

1 antexs”
‘thermal oy

(13)

(14)

In (14), erfc denotes the complementary error function.
Solutions to (14) for a range of parameters S and ® are shown
in Figure 4. The thermal entry length can then be estimated as
X=u,t, where &, =h’AP[3nx, for a flow driven by a
constant source pressure AP and &, =h2G/3n for a flow
driven by a constant global pressure gradient G (equation (3)).
This yields the following estimates for the thermal entry
length:

Figure 4.
equation (14).

Numerical values of parameter A satisfying
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2 2
Excess pressure-driven Xx= fl—n(—lAi) (15)
2431k )
. h%
Topography—dri?/en X=1 2)12'17,( (16)

Because expressions (15)-(16) are the unique lengthscales in
this problem, any flow into an infinite rigid-walled channel
will eventually freeze, even for an unlimited source, provided
that viscous dissipation in the fluid is negligible (see below)

£ €1 Fien
Thus this case differs qualitatively from that of flow in a finite

channel [Bruce and Huppert, 1990; Lister and Dellar, 1996],
where unlimited meltback of the channel walls is predicted for
sufficiently large fluid velocities.

For T,=1200°C, Ty=0°C, AP =5 MPa, G=(p,,-p,, Jgsina
~0.3 MPa km™ (a typical driving pressure gradient due to a 2%
along-strike slope) and 1=100 Pa s, from (15) and (16) we find
that a 1 m wide basaltic dik¢ would have a thermal entry length
of ~20 km if driven by the excess pressure alone and ~43 km if
driven by topography alone. Wohile these numbers are
intriguingly close to the observed wavelengths of crustal
thickness variations on the MAR, the strong dependence of
the thermal entry length on the dike width (k2 and o< h* for
the end-member cases described by (15) and (16), respectively)
suggests that moderate increases in dike thickness could allow
dikes to travel distances far exceeding the lengths of ridge
segments before freezing.. However, estimates (15)-(16) do
not account for decreases in the propagation velocity because
of channel constrictions due to solidification. This effect has
a strong positive. feedback since the decreasing fluid velocities
decrease the amount of advected heat, which further enhances
freezing (the opposite effect is also possible, i.e., when
meltback of the channel walls increases the total flux of
magma [Bruce and Huppert, 1990]). Therefore specifically
tailored numerical experiments are required to investigate the
flow evolution in space and time.

Consider the thermal evolution of a fluid flowing into a
semi-infinite rigid-wall channel (Figure 3). Conservation of
energy in the fluid [0< x <xy (¢), |y|<w(x,1)] is given by

I uNT= VT
ot
where T=T(x,y,t) is fluid temperature, ¢ is time; and the
components of the velocity vector # are given by equation (9).
In the solid [|y|>w(x,t)], temperature obeys an ordinary
diffusion equation

am

o _ 2

7 =T
We define a Peclet number Pe as the ratio of the characteristic
timescales for diffusion (w?/x) and advection ( w/i, ), so that
Pe ~ (q/K) where g is given by (10). Unless the dike is
almost completely halted by freezing, the magma flow is
characterized by large Peclet numbers, Pe >> 1, which means
that along-stream conduction is negligible compared with
advective heat transport. In this case, the Laplacians (V*T)
in (17)-(18) reduce to 9°T/dy*. The fluid-mechanical and
thermal parts of the problem are coupled by the equation
goverhing the rate of chilled margin growth [Carslaw and

Jaeger, 1959]
om aT
L—=- .
R ]

- (18

19)
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In (19), k is thermal conductivity and brackets denote the jump
in temperature gradient across the solid-liquid interface,
[/ —fly-w+ f| yey.-  For the rigid-walled channel,
w(x,t)+m(x,t)= const—h so that ow/dt =-dm/fot. At the
phase boundary [|y|=w(x,z)] the temperature equals the
solidus temperature T,. The flow ceases when w=0 at some
point along the channel. Following Bruce and Huppert [1990]
and Lister [1994a], we treat the fluid phase as isoviscous,
assuming that the temperatiire effect on fluid viscosity is
dominated by a step increase at T =T,. The full numerical
solution to this problem is presented in section 3.

In general, fluid superheat and latent heat of crystallization
are not the only sources of energy that may impede freezing.
Fluid flow is a dissipative process in which viscous pressure
losses are ultimately transformed into heat. The significance
of viscous heating compared with the other sources of heat
energy in the fluid is characterized by the Brinkman number,
which represents the ratio of the viscous heat generation to
conductive heat loss [e.g., Delaney, 1987; Rubin, 1995]

42
Br=—1G (20)
T’k(Tm - TO)

(for the topography-driven flow). Using the same parameters
as in the. calculation of the thermal entry length (equation
(16)), from (20) one may conclude that viscous dissipation
should not be important in dikes that are thinner than ~2 m
(for a 2 m wide dike, Br ~ 0.3). Judging by ophiolite
observations, this condition is satisfied for the majority of
mid-ocean ridge dikes [e.g., Gass, 1989; MacLeod and
Rothery, 1992], and therefore. we will neglect viscous
dissipation in most of our simulations. It should be
mentionéd, however, that the. strong dependence of viscous
heating on the channel width (e<h") and driving pressure
gradient (o< G?) indicates that Brinkmian numbers of order
unity might be reached by some large dikes, which thus would
be able to propagate as long as the available driving pressure
gradient does not drop below some critical value (for example,
when the topographic slope levels off). Note that when the
conductive heat loss is balanced or exceeded by viscous
dissipation, the dike would be able to propagate downrift even
when the source becomes depleted and the supply of new
magma decreases.

3. Scaled System of Equations and Numerical
Solution

This. section gives the mathematical details of our
simulations. Readers who are not interested in these details
may proceed directly to section 4.

We consider two cases of flow in a rigid parallel-walled
channel of infinite extent. In case.l, the flow is driven by the
source excess pressure AP only, and in case 2 it is driven by a
combination of the source pressure AP and a constant global
(e.g., topographic) pressure gradient G. We define
dimensionless temperature 6 ,

o=(T-T)/(T.~T,).

as suggested by (11). Dimensional analysis of (9)-(10) and
(17)-(18) prompts the following scalings for variables x, y,
and r:

21
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12
Case 1 -£=h2(§q ,
\ K17 )
Case 2 1=nt S (22)
Kn
. W2
y=h, f=—o:.
Y K

12
Case 1 i, =(—P—K} )
n
h2
Case 2 u,=—=G, (23)
]
. _K
uy = Z’ .

Nondimensionalization of (17)-(18) and (9)-(10) using (22)-
(23) gives rise to the following system of equations:

96 1w - 90 yowade) J°6
—————F e = , (24
ERS (t)(9x+w o E)y) 57 (Plew). 29
0 36
_8T=-¢9y_i |y|>w , 25)
for 0 < x < xy(f). In (24), F(#) is a modified dimensionless
flux,
XN
Case 1 F(t) = (I dxj 5
ow
(26)
Case 2 Fiy=1F%n  p_APED
""ﬂ h*G
0 w’

where the parameter I” is essentially a ratio of the driving
pressure gradiehts due to the excess source pressure and due to
topography. Equation (19) coupling the growth of the chilled
margin with the temperature field may be written as

ow 1[a87 _
S5l v

Equations (24) and (25) are subject to the following initial and
boundary conditions:

27

Att=0,
w=lfor 0<x<eo;  xy<<l;  6=0 for [y|>1. (28)
For t 20,
Incoming fluid temperature
6 =1 forx=0 and |y|<w(0,?). (29)

Phase boundary is at the solidus temperature

6= 0 for |y|= (30)
Chill thickness is zero at the fluid front

w=1 for x=xy. 31
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Temperature at infinity

6 =0 for |y| — . (32
The Stefan number S and nondimensional solidus temperature
© were defined by (11) and (12), correspondingly.

It should be mentioned that (24) is hyperbolic in x and ¢,
and thus the ‘“‘upstream” temperature boundary condition
should be specified at x=x,. Lister [1994a] proposed that the
appropriate boundary condition at the fluid front is
“temperature turn-around”, in which the temperatures of the
incoming streamlines (in the reference frame of the moving
front) are identified with the temperatures on the
corresponding outgoing streamlines (see Lister [1994a] for
details). The flow near the fluid front (closer than several
channel thicknesses) becomes essentially two-dimensional
and the simple parabolic velocity profile given by (3) cannot
be assumed. The details of the advection there may be
neglected as long as Pe >> 1, but the upstream boundary
condition should reflect the fact that the fast moving fluid in
the center of the channel is placed against the cold walls at the
moving fluid front. In our calculations, we assumed that the
temperature at the fluid front is an average of the temperatures
associated with the incoming volume of fluid during the
current time step. We found that different energy-conserving
upstream boundary conditions have little effect on the global
flow evolution.

Details of a numerical solution of the system (24)-(27) are
given in the appendix. It should be mentioned that the
incompatible temperature boundary condition at the point (0,
w) requires simultaneously 6=1 and #= © and thus an infinite
rate of meltback at all times (unless @ =1, i.e. if the fluid is
injected at the solidus temperature). Therefore the channel
thickness at x=0 is ill-defined. In particular, w(O, ¢)
intrinsically depends on the cross-stream mesh discretization
because the latter controls the temperature gradient in the fluid
(99/3y|x=0’y=w_ =(1-©)/4y, where Ay is grid spacing).
Trials with different mesh sizes and time steps show that this
incompatibility (apparently also present in the model of
Lister and Dellar [1996]) does not affect the accuracy of
calculations more than two grid points downstream.

4. Results

Figure 5 shows the evolution of the temperature field and
channel geometry for a flow driven by a constant global
pressure gradient alone (case 2, I"=0) for §=0.5 and ©=0.9
(e.g., corresponding to T, =1250°C and T,=250°C). At early
times, solidification proceeds everywhere along the channel
wall. Because the temperature gradients are large, heat
conduction dominates advection. For this reason, and because
the propagation velocity is nearly constant, the chilled
margin acquires a characteristic parabolic profile beyond the
fluid front. Two thermal boundary layers are formed in the
fluid: one associated with conductive cooling of the incoming
hot fluid along the channel wall, and another due to
temperature turn-around at the fluid front. At later times, the
continual supply of heat stops freezing near the source and
reverses the migration of the phase boundary, causing
meltback of the initial chill and, subsequently, of the original
solid. As mentioned above, for numerical reasons the channel
thickness at x = 0 is ill-defined. Eventually, the fluid loses its
superheat through conduction to the host solid and quickly
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Figure 5. Development of the temperature field and channel
geometry for a flow driven by a constant driving pressure
gradient (case 2, I'=0) for § = 0.5 and ® = 0.9. Vertical axis
is scaled in units of the initial channel thickness (dotted line)
and horizontal - axis is normalized by the current
nondimensional distance from the source to the magma front
xy(t). Chilled margin (solid line following the 0.9 isotherm)
grows inward as the fluid loses its heat due to conductive
cooling. Fluid region is hatched; xy is nondimensional
thermal arrest length (see equations (22)). - -

solidifies thereaftér (Figure Sc). Progression of the fluid front
in time is shown in Figure 6a. Figure 6b shows the migration
of earthquakes associated with the July 1978 dike intrusion
north of the Krafla caldera, Iceland [Einarsson and .
Brandsdottir, 1980], which propagated down a slope of ~1%.
Although lateral gradients in the ambient horizontal stress
might also play a role in driving the magma flow, the
qualitative similarity between Figures 6a and 6b suggests that
the decrease in migration velocity might manifest thermal
arrest at ~30 km from the source (center of the caldera).

For dikes intruding oceanic crust, the initial magma
temperature T, may vary from the solidus (~1150°C) to
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Figure 6. (a) Dimensionless position of the fluid front as a function of dimensionless time for the problem shown in Figure 5.
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time. (b) Migration of seismic activity along the fissure swarm north of the Krafla caldera during the July 1978 dike intrusion.

From Einarsson and Brandsdottir [1980], reproduced with permission of the Springer Inc.

perhaps 1300°C. Although the initial temperature of the host
rocks T, may in principle approach the solidus, the dike
thickness is expected to decrease below the brittle-ductile
transition because of the increase in horizontal compressive
stress (Figure 2). Because increases in thickness will be seen
to be much more significant than increases in temperature, we
limit the range of the initial host rock temperature from 0°C to
some 600°C. According to (11)-(12), this limits the range of
the Stefan number to 0.4<S<2 and the dimensionless
solidification temperature to 0.75< ©®<1. The parameter I,
defined by (24), may vary widely (for reasonable geophysical
parameters, I"< 1; note that for I'>> xy, case 1 is recovered).
Figure 7a shows dimensionless solidification distances xy, for
flows driven by a fixed pressure drop between the magma

source and the magma front (case 1) for a range of geologically
reasonable values of S and ©. Figure 7b shows analogous
results for case 2 for I'= 0 and I"=0.17 (I" = 0.17 corresponds,
for example, to a 1.5 m wide dike driven by an excess source
pressure of 5 MPa and an along-strike topographic gradient of
0.3 MPa km'l). These thermal arrest distances can be made
dimensional using scalings (22) (see section 5).

4.1. Effect of a Narrow Dike Tip

Solutions from section 3 would be directly applicable to
lateral dike propagation if magma was traveling through an
open fissure of fixed width. In reality, dikes propagate via
elastically widening existing or self-induced fractures in the
host rock. One consequence of this for laterally propagating
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Dimensionless thermal arrest distances x;,

Figure 7.
calculated for geophysically relevant range of parameters S
and O for a flow driven by (a) fixed pressure drop from the
source to the fluid front, and (b) constant global (e.g.,
topographic) pressure gradient (solid contours) and a
combination of a fixed pressure drop and a constant global
pressure gradient (I" = 0.17, dashed contours).

dikes is that elasticity narrows the channel behind the dike tip
over distances of the order of the dike height (i.e., within the
“nose” region in Figure 1). There are several reasons to
suspect that the narrow dike nose may affect the overall
propagation. First, the magma in the nose is most susceptible
to freezing because it has cooled the most and because it comes
in contact with the coldest rocks. Second, the mechanical
narrowing of the dike walls provides the opportunity for the
rapidly growing chilled margin to block the flow. Given a
nearly constant propagation velocity, the chilled margin
grows approximately as the square root of distance behind the
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magma front. The shape of the elastic crack depends on the
pressure distribution within the crack, and the crack profile
behind the fluid front may widen more slowly than the square
root of distance, especially near the magma front [e.g.,
Rubin, 1993a, Figure 3]. Thus, in the nose region there is a
competition between the rate of the elastic widening of the
dike and the rate of chilled margin growth. Depending on
which rate is larger, the nose will either entirely freeze or
propagate in some quasi steady state fashion. Hence it is of
interest to quantify the effect of the dike nose on the global
flow evolution.

Because our model of the magma flow in the dike “tail”
(Figures 1 and 3) does not explicitly include elasticity, we use
an ad hoc approach and combine solutions for the rigid
channel with solutions for the steadily moving nose of the
prescribed shape (see the appendix for details). Figure 8
shows the results of the coupled simulation for the problem
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Figure 8. Combined rigid-wall channel - rigid nose

solutions for the same model parameters as in Figure 5.
Arrows mark junction between the “nose” and the “tail” (see
section 4.1. for details). Other notation is the same as in
Figure 5.
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shown in Figure 5 and for a dimensionless nose length of 102
(corresponding to a dike that is 4 km tall and ~1 m wide, see
equations (1), (2) and (22)) and a thickness at the magma front
that is 107 times that in the tail (the majority of exposed
dikes in Iceland have thicknesses at the magma front of the
order of several centimeters [e.g., Gudmundsson, 1995]). The
flow becomes constricted first at the tip of the nose when the
propagation velocity drops to about several percent of the
prefreezing value (which is the steady state value for
topography-driven flows). Such behavior is confirmed by
fully coupled elastic - fluid-mechanical - thermodynamic
simulations of the dike nose propagating at constant speed; in
these calculations the magma was assumed to enter the nose at
solidus temperature (unpublished results). Note that the
reduction in the propagation velocity is primarily due to
solidification in the dike tail (the appendix). The calculated
thermal arrest distance is ~ 20% shorter than the analogous
nose-absent solution (Figure 5). Note that the dimensionless
nose length decreases dramatically with modest increases in
the (dimensional) dike thickness; this is because the thermal
entry length increases as the fourth power of the dike
thickness (equation (22)), while the dimensional nose length
(constrained by the dike height) increases only as the square
root of thickness (equations (1) and (2)). For noses that have
smaller nondimensional length, the overall effect on the
global flow evolution is less.

5. Discussion

The computed thermal arrest distances (Figure 7) can be
made dimensional using scalings (22), and the thermal
parameters can be retrieved from (11)-(12) given particular
values of the Stefan number S and dimensionless solidification
temperature ©. Figure 9 shows dimensional results for several
examples. In the first example (solid line in Figure 9), the
flow is driven by a fixed pressure drop of 5 MPa from the
source-to the magma front. In the second example (dotted line)
the flow is driven by a constant global pressure gradient of 0.3
MPa km (corresponding to a submarine topographic slope of
2%), and in the third example (dashed line) by a combination
of the fixed pressure drop of the first example and the global
pressure gradient of the second example. In all cases, the dike
(full) thickness was taken to be 1.5 m (on the high side by
ophiolite standards) and the magma viscosity was taken to be
100 Pa s (consistent with measurements in Hawaii). For these
parameters, the propagation distance in cold rock is 30 to 40
km for the first two examples (notice that the driving pressure
gradient due to gravity becomes dominant when the dike is
~17 km long) and about 60 km for the combined driving
pressure gradients. We reiterate that the thermal arrest
distances calculated for case 1 more strongly overestimate the
distances that dikes may travel than in the analogous
calculations for case 2, because for dikes driven by the excess
source pressure alone, the mechanical thickness decreases
toward the dike nose proportionally to the viscous pressure
drop in the magma [e.g., Lister and Kerr, 1991].

The scalings (20) indicate that for the topography-driven
dike, reducing the thickness by a factor of 2 decreases the
propagation distance by a factor of 16; decreasing the magma
viscosity or increasing the topographic slope by a factor of 2
doubles the propagation distance, etc. Bearing in mind that
these calculations with a constant thickness slot all the way to
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Figure 9. Maximum distance basic magma may travel

through a 1.5-m-wide slot before the channel is constricted by
freezing, as a function of the initial solid temperature (data
taken from Figure 7). (1) Solid line is for a flow driven by a
constant pressure drop of 5 MPa along the channel; (2) dotted
line is for a flow driven by a constant global pressure gradient
of 0.3 MPa/km (corresponding to a submarine slope of 2%);
(3) dashed line is for a flow driven by a combination of 1 and
2. Initial magma temperature is assumed to be 1200°C, solidus
temperature is 1150°C, thermal diffusivity is 10° m? s, latent
heat of fusion is 500 kJ kg™ and heat capacity is 1 kJ kg™* °C’L.

the magma front and an unlimited source volume place an
upper bound on thermally admissible dike lengths (provided
that viscous dissipation is negligible), it is apparent that
freezing can limit the range of most dikes to less than typical
segment half lengths along slow spreading ridges (~40 km
[e.g., Schouten et al.., 1985; Lin and Phipps Morgan, 1992]).
Several calculations with the viscous dissipation term have
been performed; the results demonstrate that shear heating
increases the propagation distance for the 1.5 m wide dikes
shown in Figure 9 by less than 15%. Factors that might reduce
these propagation distances, other than variations in the
parameters entering the scaling relations, include the
following:

1. The magma source is depleted before the dike is
substantially slowed by freezing. Note that the lateral
emplacement of ~30 km long dike requires release of ~ 0.1 km®
of basaltic melt in a single intrusive event; such a volume-may -
be large taking into account typical rates of magma production
and a lack of permanent magma chambers at the slow
spreading centers [e.g., Dick, 1989; Cannat, 1996].

2. Results obtained using a rigid-wall channel model are
upper bound estimates in that they neglect the decrease in
thickness towards the dike top and bottom. For a lateral dike
trapped at the LNB, the average dike thickness is about 2 times
less than the maximum dike thickness [Lister, 1990]. This
implies that much of the magma flowing down the “median”
(maximum width) cross section is diverted to supply the
thinner (more slowly flowing) regions above and below and
does not contribute to advancing the magma front; for this
reason the dike does not travel as far before being halted by
freezing.

3. Large-scale inelastic deformation of the host rocks
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associated with dike propagation. Inelastic deformation of the
ambient solid is usually neglected in fluid-mechanical models
of dike growth, on the assumption that rock fracture resistance
is negligible compared with viscous pressure losses in the
fluid [e.g., Lister and Kerr, 1991]. However, this assumption
is questionable if the region of inelastic deformation (the
“process zone” at the dike tip) depends on the dike size and/or
on the ambient stress field. Scaling of the process zone size
with dike length is suggested by field data and theoretical
considerations [Rubin, 1993b], and the possibility of
substantial increases in the rock fracture energy under in situ
conditions has been inferred from laboratory experiments
[Fialko and Rubin, 1997]. Note that large-scale normal
faulting induced by lateral dike intrusions is common in
regions with preexisting tectonic extension [e.g., Rubin,
19921]. .

As was mentioned above, the average dike thickness is quite
sensitive to the excess magma pressure. Given some
statistical distribution of excess pressures (which must depend
in part upon the strength of the magma reservoir envelope),
freezing will tend to restrict thinner dikes to lesser
propagation distances. This presumably leads to the observed
decrease in dike number and increase in dike thickness with
increasing distance from the shallow magma source in eroded
rift zones in the British Tertiary Province, Hawaii, and Iceland
[e.g., Speight et al., 1982; Walker, 1987, Gudmundsson,
1990; Walker et al., 1995]. Small variations in the excess
magma pressure p could cause dikes to propagate only some
20-30 km on the MAR but up to 100 km in Iceland and Hawaii.
For dikes propagating along the LNB due to a density step, the
dike thickness depends on the excess magma pressure squared
(see equations (1) and (2)), so that the thermal arrest length
scales as p® for dikes driven by a topographic slope and as Pt
for dikes driven by an excess source pressure. Consequently, a
factor of S increase in the dike propagation distance may be
caused by as little as a 20% increase in the excess pressure at
the magma source. Given that magma supply rates are
presumably much higher in Iceland and Hawaii and on the Juan
de Fuca Ridge than on slow spreading centers on the MAR, a
substantial difference in dike propagation distance between
these locations is possible. Note that variability in the
average dike propagation distance due to variations in the
crustal thermal regime alone is much less significant (Figure
9).

Less frequent intrusions beyond the average thermal arrest
distance could lead to the increased tendency for “tectonic” as
opposed to “magmatic” extension with distance from volcanic
centers along the MAR [Karson et al., 1987], as extension in
the absence of intrusion leads to the development of stress
fields appropriate for normal faulting [e.g., Rubin, 1990;
 Parsons and Thompson, 1991]. In a magma-starved region
undergoing extension, the depth of effective neutral buoyancy
corresponds to the brittle-ductile transition [Rubin, 1990,
1995] (see also Figure 2). If the brittle-ductile transition
resides within the mantle, then dikes will tend to spread
laterally at this depth (whether they are derived laterally from
the segment high or vertically from the mantle below). Thus
the total melt delivery to the distal ends of ridge segments may
be considerably larger than that inferred from crustal thickness
alone (although seismic velocities probably rule out more
than 25% gabbro in the mantle within a few kilometers of the
Moho [Carnnat, 1996]). At the same time, this would imply
that dikes that spread at the deepening rheologically
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controlled LNB are less likely to erupt. Since volcanics do
comprise a significant portion of the supracrustal rocks at the
distal ends of many MOR segments [e.g., Dick, 1989], this
may suggest that beyond the average thermal arrest length the
crust might be accreted due to either episodic magma pulses
from the underlying asthenosphere, such that the extensional
stress field is temporarily reset by the dike intrusions, or to
“unusually” large lateral dikes.

If substantial melt fractionation occurs in laterally
propagating dikes, our model could explain observed
correlations of the magnesium number Mg # (defined as a ratio
Mg/(Mg+Fe*")) with the along-axis bathymetry [Hekinian et
al., 1976; Thompson et al., 1989; Langmuir et al., 1992].
Observed drops in Mg # imply at least 50 to 60% fractional
crystallization [e.g., Bloomer et al., 1989], which might be
possible in a dike provided freezing is efficient in removing
crystals from the melt into the chilled margin (e.g., see Figure
8). If so, and if dikes that are most likely to erupt are
statistically “large” ones (i.e., the ones whose thermal arrest
length is comparable to the ridge segment length), then
basalts that erupt far from the magma supply center would tend
to be more fractionated than those that erupt near the center.
The data of Batiza et al. [1988] show decreasing Mg # over
distances of ~25 km, and elevation drops of ~1.5 km, from the
axial high along the MAR at 26°S. Beyond this distance the
along-axis slope decreases to zero or reverses and Mg #
increases; perhaps the break in topographic slope marks the
transition from laterally derived basalts to those derived
primarily from below. This would be consistent with the
occurrence of relatively high-temperature (high Mg #) magmas
in the vicinity of the fracture zones. That is, in order to reach
the surface, the melt from a hypothetical magma pocket
beneath a segment end has to transverse perhaps less than 10
km of the overlying lithosphere, compared with 20-40 km of
cold crustal rocks for magmas intruded laterally from a central
magma chamber.

Our results also suggest that crustal contamination of
primitive melts intruded along the ridge axis from the central
magma chamber should be negligible. This stems from the
fact that the region of the host rock melting is restricted to
less than 1% of the total dike volume fO}' the parameter space
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Figure 10a. Detailed picture of near-source thermal erosion
for the problem shown in Figure 5c. The exemplary
dimensional scale given on the right axis corresponds to an
initial channel thickness of 1 m (h=0.5 m), magma viscosity
n=100 Pa s, thermal diffusivity k=10° m?s’!, and driving
pressure gradient G=300 Pa m™”. Dashed line denotes the
initial geometry of the conduit.
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15° slope

Figure 10b. Field observations of possible meltback of dike
walls near the magma source in the Oman ophiolite. Solid
lines represent chilled margins, coarse stipple denotes
gabbro, and fine stipple denotes microgabbro. From MacLeod
and Rothery [1992], reproduced with permission of the
Geological Society Publication Office.

explored. For the case shown in Figure 5, the meltback is
restricted to the very source (cross section x=0) only, even
with a mesh of ~800 points along the dike (which corresponds
to approximately every 20 m for a dike that is 1 m wide; see
Figure 10a). Note that 1-m-wide dikes driven by a pressure
gradient of 2 MPa/km would thermally erode the ambient solid
indefinitely (or until the source is depleted) in the 2-km finite-
channel model of Lister and Dellar [1996]. A major difference
between the finite and infinite channel models is that when
meltback of the initial chilled margin has begun to occur all
along the finite channel (at which time meltback of the host
rock is restricted to very near the source), the flow in the
infinite channel has already solidified at greater distances from
the source. Nonetheless, near-source meltback is a very
appealing mechanism for producing the inferred widening of
some dikes (from about 1 m to perhaps 10 m) as they merge
with gabbroic source rocks in the Oman ophiolite (Figure
10b). This gradation occurs over a distance of only a few tens
of meters, which is at the limit of our current along-strike
resolution (Figure 10a); however, quantitative similarity
should not be expected at this stage because of the overall
simplicity of the assumed initial conditions (e.g., the solid
temperatures near the source are likely to be close to the
solidus) and the incompatible boundary conditions at the node
corresponding to the source.

As a note for future improvements, the model can be made
more realistic by introducing elasticity so that the local
channel thickness is coupled to the local pressure. First, this
would allow one to determine the fate of a finite batch of
magma intruded along the ridge by having the dike thin in
response to a pressure decrease. Second, one could compute,
rather than stipulate, what the final dike thickness will be

FIALKO AND RUBIN: THERMAL ARREST OF LATERAL DIKES

(although the dike thickness is controlled by the excess
magma pressure through elasticity, ultimately that excess
pressure is determined by the interaction of magma flow and
freezing as well as the source conditions). By considering the
time evolution of the magma pressure uprift of the dike
““freezing point” (i.e., the point along the dike where it is first
blocked due to solidification), it will be possible to address
the question of how freezing influences where the dike might
erupt. Finally, by imposing a constant far-field stressing rate,
a stress threshold for normal faulting, and a constant or
varying magma supply rate, one could systematically examine
the nature of the along-strike variation in the ratio of tectonic
to magmatic extension. For active ridges where this variation
can be inferred from detailed bathymetry, the model results
might lead to constraints on typical volumes of injected
magma in discrete “‘spreading” events.

6. Conclusions

We have considered the thermal and fluid-mechanical
aspects of lateral dike propagation by simulating the flow of
magma into an initially empty channel of constant thickness
and unlimited length. Our numerical algorithm accurately
accounts for (1) downstream advection of heat in the flowing
magma, (2) cross-stream conduction of heat in the magma and
host rock, (3) cross-stream advection of heat in the magma
(due to downstream variations in the thickness of the frozen
margin), and (4) release or absorption of latent heat at the
(moving) frozen margin of the dike. Although important
aspects of lateral dike growth such as elasticity are not yet
included, the rigid-walled channel is an instructive case to
consider because it provides an upper bound on the distance
that magma may travel, given that viscous dissipation can be
neglected for the majority of the MOR dikes. Our results show
that for reasonable parameters this upper bound does not
exceed the wavelength of crustal thickness variations or
transform fault spacing along slow spreading mid-ocean
ridges, which indicates that thermal controls on the crustal
melt delivery system could be an important factor in
modulating these variations.

Along-axis variations in stress are likely to be produced by
variations in the ratio of total extension to dike-
accommodated extension. For ridges where the spreading rate
is uniform and magma is supplied primarily to a central high,
as may be the case along much of the MAR [Schouten et al..,
1985; Lin et al., 1990}, this ratio is most likely determined by
the ability of magma freezing to limit the distance that
laterally propagating dikes may travel. Magma freezing is
also likely to be responsible for larger numbers of thin dikes
near the magmatic center and fewer but thicker dikes farther
from the center, observed in eroded rift zones in Iceland and
the British Tertiary Province.

Appendix: Numerical Scheme Used for Simulation
of Freezing of Fluid Flow in a Flat Semi-infinite
Channel

The system (24)-(27) together with the boundary conditions
(29)-(32) was solved numerically using finite difference
techniques. For computational purposes, it is convenient to
map the flow region onto a fixed rectangular grid.
Correspondingly, we use coordinate transformations
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§=y/w(x,t) for [y|<w, [y|=y-w(x,0)+1 for |y|>w, and
X =x/xy (¢). Because of the symmetry about the x axis, the
computational domain was restricted to y= O and a zero heat
flux boundary condition was prescribed across the interval
0<Xx<1l, y=0. All y derivatives were discretized using a
Crank-Nicholson scheme. Along-stream derivatives were
discretized using second-order upwind differences, except at
the grid points adjacent to x=0 and 1, where FTCS
discretization was used [Press et al., 1992]. The velocity of
the fluid front was evaluated based on the volumetric flux at the
beginning of a time step, x, = F(¢)/3. This expression takes
into account that w(1, )=1 (boundary condition (31)). Other
nonlinear coefficients were estimated at the middle of a time
step to obtain a scheme that was second order both in space
and time. Time steps were taken to be one-fourth of those
allowed by the Courant condition. Integrals in (26) were
calculated using Simpson quadrature. Inversion of the system
of linear algebraic equations required by the Crank-Nicholson
(semi-implicit) discretization admits a tridiagonal structure of
the coefficients matrix and can be performed very effectively
using a Thompson algorithm.

An adjustable time-dependent grid was used in the solid
domain ( y>1); new points were added to the grid in the y
direction when the temperature gradient at the “distant” end of
the grid (placed initially at j=3) exceeded 107 for a given ¥
coordinate. Thus the mesh expanded into the solid together
with the thermal boundary layer; when a particular mesh line
doubled in length, every other node along this line was tossed
out to keep the number of the nodes reasonably low (by the
time diffusion proceeds that far into the solid, the temperature
profile near the solid-liquid interface becomes essentially
linear, and an increase in grid spacing in the y direction does
not significantly degrade the accuracy of the temperature
gradient calculations at y=1). A typical calculation (e.g., the
one shown in Figure 5) was performed using a mesh of
~170x130 grid points and took about 10>-10* time steps. The
accuracy of the code was checked by conservation of energy,
by mesh and time step refinements, and by comparison with
few available asymptotic solutions. For example, the
temperatures associated with the constant velocity flow
through a flat duct with isothermal walls and no solidification
(Graetz problem) were calculated analytically using

eigenfunction expansions [e.g., Brown, 1960] and
y A
h
)

T~ \7"
oy 1

—

X

Figure A1l. Assumed shape of the “rigid” dike nose used in
the combined simulations intended to investigate the role of
the narrow dike tip on the global flow evolution. A
semiellipse having minor axis of k is truncated such that the
aperture at the truncation point (assumed position of the fluid
front) equals 6.
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numerically using our code. In this simulation, we assumed
very large S (so that the chilled margin growth is negligible),
0=0 (no conduction of heat into the solid) and carried
calculations until the steady state temperature distribution was
reached. The numerical solution converged to the analytical
one with an accuracy of the order of the truncation error in the
eigenvalue series expansion [Brown, 1960].

We also wished to explore the effect of the narrow tip on the
flow evolution in a dike. We choose a shape of a truncated
semiellipse (Figure Al) as an approximation of the
mechanical thickness of the dike nose. For the majority of
mid-ocean ridge dikes, the nose length is a small fraction of
the thermal arrest distances, which makes it difficult to resolve
it on the uniform grid used in the rigid-walled channel
simulation. Therefore we use a nonlinear mapping for the
along-stream coordinate, x =1—(1—x/xN )]/2, which stretches
the region near the fluid front [e.g., Lister, 1994a]. Other
coordinate transformations are the same as previously. At
each time step, the nose is assumed to propagate preserving
its mechanical shape at a constant velocity dictated by the flux
from the dike tail. The contribution of the viscous pressure
drop within the nose is neglected; as mentioned in section 2,
coupled elastic/fluid-mechanical models indicate that the
increased pressure drop necessary for flow through the narrow
tip is balanced by a pressure at the magma front which is much
less than the ambient value. Equations for the fluid velocities
within the nose region were modified to account for the fact
that the volumetric flux along the nose is not constant but
varies proportionally to the nose thickness.
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