An hourglass is filled with a Newtonian liquid having the dynamic viscosity \(\eta \) and the density \(\rho \). It takes time \(\Delta t \) for a fluid level to drop from \(z_1 \) to \(z_2 \). The hourglass radius is \(R \), the radius of the hole through which the fluid escapes is \(r \) (\(r \ll R \)), and the “length” of the hole is \(h \) (\(h \ll z_1, z_2 \)). Assuming that the fluid flow through the hole occurs at a low Reynolds number, and is well approximated by the circular Poiseuille (pipe) flow, determine the fluid viscosity \(\eta \). Discuss how one might modify the experimental configuration to allow for a more accurate estimate of \(\eta \).