
1. Introduction
According to the Mohr-Coulomb failure theory, new or pre-existing faults should be preferentially activated at 
an angle ±θ0 to the principal compression axis (Anderson, 1951; Scholz, 2019; Sibson, 1974). The two antithetic 
fault orientations are known as conjugate faults (e.g., Twiss & Moores, 1992, p. 141). For typical laboratory 
values of the static coefficient of friction μ of 0.6–0.8 (Byerlee, 1978), the dihedral angle between optimally 
oriented conjugate faults is 2θ0 = arctan(μ −1) ≈ 50 − 60° (Anderson, 1951; Sibson, 1974). While in some cases 
there is good agreement between predictions of the Mohr-Coulomb theory and the observed fault orientations 
(Alt & Zoback, 2017; Walsh & Watterson, 1988), there are also ample examples of conjugate faults that are not 
optimally oriented with respect to each other and/or the inferred principal stress axes, assuming the Byerlee's 
friction. In fact, many active conjugate faults exhibit dihedral angles close to 90°, considerably greater than 2θ0 
(Fialko & Jin, 2021; Hatch-Ibarra et al., 2022; Jin & Fialko, 2020; McGill et al., 1989; Thatcher & Hill, 1991; Yue 
et al., 2012). Proposed explanations include anomalously low in situ friction (e.g., Middleton & Copley, 2014; 
Ross et al., 2019), a dominant control of deep fault roots in the ductile lower crust (Liang et al., 2021; Scholz 
& Choi, 2022; Thatcher & Hill, 1991), and fault rotation due to finite tectonic strain (Cloos, 1955; Fialko & 
Jin, 2021; Freund, 1970; Nur et al., 1986). A low frictional strength is often inferred in case of mature well-slipped 
faults (Mount & Suppe, 1987; Sibson, 1994; Wernicke, 1995), presumably due to activation of various weakening 
mechanisms (Brown & Fialko, 2012; Di Toro et al., 2011; Rice, 2006). However, the bulk of the seismogenic 
upper crust is unlikely extremely weak, as evidenced by optimal orientations of at least some active faults (Alt & 
Zoback, 2017; Walsh & Watterson, 1988), stress measurements in deep boreholes (Townend & Zoback, 2000), 
and long-term support of topography (Burov, 2011; Coblentz et al., 1994; Fialko et al., 2005). Deep ductile roots 
could possibly control the orientation of faults that originate at the bottom of the seismogenic zone and/or cut 
through the entire brittle crust (Scholz & Choi, 2022), but not of the abundant small faults having characteristic 
dimensions of less than ∼10 km that are unlikely connected to the ductile substrate (Fialko & Jin, 2021). It was 
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also suggested that faults may typically form at near-optimal angles, but be subsequently rotated away from the 
axis of maximum compressive stress due to finite tectonic strain (Cloos, 1955; Fialko & Jin, 2021; Freund, 1970). 
The maximum rotation angle is limited by a fault lock-up, and is on the order of θ0 (Nur et al., 1986; Sibson, 1990).

These hypotheses can be discriminated by quantifying relative orientations of small active faults. Fialko and 
Jin (2021) noted that lineated clusters of microseismicity in the Eastern California Shear Zone near Ridgecrest 
reveal multiple high-angle conjugate faults consistent with the rupture geometry of the M6.4 foreshock and M7.1 
mainshock of the 2019 Ridgecrest earthquake sequence (Fialko, 2021; Jin & Fialko, 2020; Ross et al., 2019). 
Fialko and Jin  (2021) further showed that the observed fault geometries are consistent with finite strain and 
rotation since the inception of the Eastern California Shear Zone. It is of interest to quantify relative orientations 
of conjugate faults in different regions undergoing active deformation (Fialko, 2021). However, identifying and 
systematically mapping active fault structures is a challenging task, especially in case of relatively small faults 
that typically do not have a surface expression.

In this paper, we apply a new algorithm to map out a population of active strike-slip faults in the Anza-Borrego 
shear zone in Southern California, and evaluate the distribution of dihedral angles between the identified sets 
of antithetic (i.e., left- and right-lateral) faults. We then use the observed fault orientations to evaluate possible 
controlling mechanisms.

2. Data and Methods
Active faults are often expressed in microseismicity (Nadeau & McEvilly, 1999; Valoroso et al., 2009). In case of 
strike-slip faults, the associated microearthquakes appear as localized streaks of epicenters in a map view (e.g., 
Alt & Zoback, 2017; Fialko, 2021). The respective quasi-linear clusters (QLCs) of events can be used to map 
active fault structures (Fialko, 2021; Skoumal et al., 2019). Several algorithms were proposed to identify line-
ated structures in highly scattered point clouds, all based on the point density and/or Euclidian distance between 
candidate points (Cochran et al., 2020; Fialko, 2021; Skoumal et al., 2019). In particular, Fialko (2021) used a 
non-parametric unsupervised learning algorithm OPTICS (Ordering Points To Identify the Clustering Struc-
ture; Ankerst et al., 1999), a variant of DBSCAN (Schubert et al., 2017), to separate clustered events from the 
background seismicity. One of the drawbacks of proximity-based algorithms such as OPTICS and DBSCAN is 
that the selected clusters can be of arbitrary shape, and additional screening is needed to cull out clusters having 
isometric or irregular geometries. Oftentimes such clusters contain smaller-scale lineated features that could 
be sensibly associated with active faults but would be missed by the search algorithm if the parental cluster is 
culled out. A robust procedure for multi-scale identification of quasi-linear sets of epicenters is therefore highly 
warranted.

2.1. LINSCAN Algorithm

We use LINSCAN, a new algorithm based on OPTICS, in which the Euclidean distance metric is replaced with 
a distance function D(P, Q) derived from Kullback-Leibler (KL) divergence. The KL divergence is a measure 
of how similar two given distributions are. For two groups of points P and Q, the distance function D(P, Q) is 
minimized when points in both groups are distributed along similar directions (see Supporting Information S1 
for details). This ensures that only specific geometric shapes (in this case, QLCs) are selected. We evaluated 
the accuracy and robustness of the algorithm using a synthetic catalog of earthquake epicenters. The synthetic 
catalog consists of (a) arbitrarily oriented QLCs of various sizes, (b) quasi-isometric clusters, and (c) randomly 
distributed “background seismicity” (see Figure S1a in Supporting Information S1). The LINSCAN algorithm 
is able to efficiently identify and separate QLCs from the rest of the data (Figure S1b in Supporting Informa-
tion S1). Occasionally, some of the original QLCs are split into co-linear sub-segments (Figure S1b in Support-
ing Information S1). This is not a major issue since we are interested in accurate estimation of the fault strike 
angles. If needed, adjacent QLCs can be merged by considering their proximity and along-strike continuity. More 
importantly, the algorithm is able to identify overlapping and intersecting clusters that are ubiquitous in the case 
of complex fault systems (e.g., Fialko, 2021), although for some of the overlapping clusters the selection choices 
are non-unique. In the test shown in Figure S1 in Supporting Information S1, the number of points identified as 
belonging to QLCs (Figure S1b in Supporting Information S1) is about 80% of the total number of “true” QLC 
points in the input data set (Figure S1a in Supporting Information S1). A small fraction of points was identified 
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as QLCs even though they did not belong to any of the input QLCs, due to either false detections or spontaneous 
quasi-linear patterns in the randomly generated “background seismicity.”

2.2. Data Analysis

We apply LINSCAN to quantify relative orientations of small strike-slip faults in a region of active deformation 
to the south of the Salton Sea, Southern California (Figure 1). This region accommodates ∼20 mm/yr of strike-
slip motion between the North American and Pacific plates (Tymofyeyeva & Fialko, 2018), and hosts a number 
of active faults of various degrees of maturity (Jennings & Bryant, 2010), as well as abundant microseismicity 
(Yang & Hauksson, 2013). This region, hereafter referred to as the Anza-Borrego shear zone, is part of a tran-
stensional transition zone connecting the Southern San Andreas Fault system to the Cerro Prieto fault system, and 
ultimately to the Gulf of California (Crowell et al., 2013; Gonzalez-Ortega et al., 2014; Herzig & Jacobs, 1994). 
We use a recently published catalog of precisely located events with focal mechanisms that spans 1981–2021 
(Cheng et al., 2023). The event locations are shown in Figure 1. We convert geographic coordinates to the local 
Cartesian (UTM) coordinates using a local origin at 117°W, 32°N. The catalog epicenters and the QLCs selected 
by LINSCAN are shown in Figure S4 in Supporting Information S1 (blue and orange dots, respectively).

To ensure that the selected QLCs are robust, we perform several quality checks. As spurious linear patterns may 
emerge at the boundaries of the area of interest (due to the discarding of data outside of the bounding box), we 
removed all east-west and north-south striking clusters near the respective boundaries. For each “inside” clus-

ter, we compute the Pearson correlation coefficient � =
∑

�(�� − �̄)(�� − �̄)∕
√

∑

� (�� − �̄)2
∑

�(�� − �̄)2 , where 
xi, yi are coordinates (northings and eastings) of each epicenter, and 𝐴𝐴 𝐴𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝐴 are the means of x, y coordinates of 

Figure 1. Map of the study area, with shaded relief. Red lines denote traces of Quaternary faults (Jennings & Bryant, 2010). 
Blue dots denote earthquake epicenters from Cheng et al. (2023) catalog. EMC = “El Mayor-Cucapah.” The inset shows the 
regional setting with respect to the North America-Pacific plate boundary (red line).
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events comprising a given cluster (e.g., Artusi et al., 2002). We retain clus-
ters for which the absolute value of the correlation coefficient is greater or 
equal to 0.5. We further fit a straight line segment to the respective sets of 
points for each cluster, and compute the mean normalized distance δ between 
the points and the best-fit line as the mean of distances from the points to 
the line, divided by the line length. We discard clusters for which δ > 0.1. 
Since we are interested in strike-slip faults, we discard clusters for which 
the dip angle of either P or T axis is greater than 40°. Finally, we perform a 
visual check to discard clusters in which the events are too sparse, unevenly 
distributed, hard to distinguish from the background seismicity, or organized 
in sub-clusters with significantly different orientations. Figure S2 in Support-
ing Information S1 shows several examples of the culled out “low quality” 
clusters, and Figure 3; Figures S5–S16 in Supporting Information S1 show 
QLCs that satisfy the above criteria. Out of the 1181 QLCs initially identified 
by LINSCAN (Figure S4 in Supporting Information S1), 332 QLCs passed 
the quality checks, and were used in the subsequent analysis.

To separate the sets of right- and left-lateral faults, for each QLC we compute 
composite focal mechanisms by summing up the moment tensors of indi-
vidual events normalized by their scalar moments (Fialko, 2021). Given the 
fault plane (revealed by the QLC strike) and polarity of the composite focal 
mechanism, we determine the sense of slip on each identified fault. Consist-
ent with the approximately north-south orientation of the principal strain 
rate axis (Figure S3 in Supporting Information S1), right-lateral faults strike 

predominantly north-west, and left-lateral faults strike predominantly north-east (Figure 4). Figure 2 shows the 
locations of the identified right- and left-lateral faults (red and blue dots, respectively). In total, there are 195 
left-lateral faults and 137 right-lateral faults. The left-lateral faults have predominant strikes of ∼20–30°, and 
right-lateral faults strike between ∼300–340° (Figure 4). The dominant orientations of active faults shown in 
Figure 4 are consistent with orientations of the right- and left-lateral Quaternary fault traces in our study area 
(Figure 1). The dihedral angles between the identified QLCs (Figure 2) are calculated by taking the difference 
in fault strikes for every possible pair of right- and left-lateral faults (Fialko, 2021). Figure 5 shows the resulting 
distribution of dihedral angles. Similar results are obtained when we limit the distance between conjugate faults 
to be less than 5 km, although the number of samples is substantially reduced.

3. Discussion
The calculated dihedral angles are nearly normally distributed with a peak around 70° (Figure 5). The majority 
of the identified conjugate faults are thus at higher angles compared to optimal orientations predicted based on 
the Mohr-Coulomb theory (Anderson, 1951; Sibson, 1974), and observed for example, in areas of fluid-induced 
seismicity in the central US (e.g., Alt & Zoback, 2017; Schoenball & Ellsworth, 2017; Skoumal et al., 2019), but 
similar to those observed in the Ridgecrest area of the Eastern California Shear Zone (e.g., Fialko, 2021; Fialko 
& Jin, 2021; Ross et al., 2019). The characteristic dimensions of faults or active fault patches used in our analysis 
vary from 75 m to 3 km, with the mean value of 0.5 km (Figures S4–S16 in Supporting Information S1). Rupture 
dimensions of individual earthquakes comprising the respective earthquake clusters are smaller still. The small 
rupture size has several implications. First, a substantial fraction of the identified small-scale ruptures are not 
associated with mature well-slipped faults, and thus not linked to the ductile substrate, precluding a possibility 
that their orientations are controlled by localized shear zones below the brittle-ductile transition (e.g., Fialko & 
Jin, 2021; Liang et al., 2021; Scholz & Choi, 2022; Takeuchi & Fialko, 2012, 2013). Second, small ruptures are 
not expected to produce strong dynamic weakening, so that their strength may be to the first order governed by 
quasi-static friction (e.g., Fialko, 2015; Lapusta & Rice, 2003).

In the area of interest, the principal axes of both the maximum horizontal shortening rate (Figure S3 in 
Supporting Information S1) and maximum compressive stress (Yang & Hauksson, 2013) are oriented approx-
imately north-south. Results shown in Figure 4 indicate that populations of right- and left-lateral faults are not 
symmetrically distributed around the axis of the maximum shortening rate and/or compression. While most of 

Figure 2. Gray dots: catalog epicenters (same as in Figure 1). Red and blue 
dots: quasi-linear clusters of epicenters with right- and left-lateral sense of 
slip, respectively, identified by our analysis. A total of 332 clusters are shown, 
including 195 left-lateral clusters and 137 right-lateral clusters. The minimum 
and maximum cluster lengths are 76 m and 3.05 km, respectively.
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the right-lateral faults are at angles of 45 ± 15° to the principal strain rate/stress axis (Figure 4), most of the 
left-lateral faults are at more acute angles of 20–30°, nearly optimally oriented assuming the Byerlee's law (i.e., 
the coefficient of friction of 0.6–0.8). This is different from the observed fault orientations in Ridgecrest, where 
the dihedral angles between conjugate faults are approximately bisected by the principal strain rate and stress axes 
(Fialko, 2021; Fialko & Jin, 2021).

Assuming that the currently active left- and right-lateral faults initially formed at equal angles to the principal 
compression axis, and that their relative orientations with respect to each other have not changed over time, the 
data shown in Figure 4 might be interpreted as indicating a counter-clockwise rotation of the entire fault system 
by 10–15°. One possible mechanism for such rotation is a preferred development and growth of right-lateral 
faults. It is known that slip on a fault embedded in an elastic medium results in fault rotation,

Figure 3. Examples of quasi-linear clusters (QLCs) that passed the quality control checks. Black dots denote earthquakes constituting a cluster, and magenta dots 
denote the background seismicity. Red lines denote best-fitting linear segments. Blue beach balls denote composite focal mechanisms. Numerical labels denote cluster 
numbers (see Figures S5–S16 in Supporting Information S1). Axes represent northing and easting coordinates, in km.
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𝜔𝜔 = arctan

(

1 − 2𝜈𝜈

2𝐺𝐺
Δ𝜏𝜏

)

, (1)

where ω is the rotation angle in radians, G the shear modulus, ν the Poisson's 
ratio, and Δτ the stress drop (Martel, 1999). For an infinitely long strike-slip 
fault with a constant stress drop, the relation between the stress drop Δτ and 
surface fault slip s is:

Δ𝜏𝜏 =
1

2

𝑠𝑠𝑠𝑠

𝐷𝐷
, (2)

where D is the fault locking depth (e.g., Segall, 2010, p. 96). From Equa-
tions 1 and 2, a strike-slip fault with a total offset s rotates by an angle

𝜔𝜔 = arctan

(

1 − 2𝜈𝜈

4

𝑠𝑠

𝐷𝐷

)

. (3)

For right-lateral slip, the predicted sense of rotation is counter-clockwise 
(Martel, 1999). The estimated total offset on the San Jacinto Fault system 
that dominates interseismic deformation in the study area is 20–25 km (e.g., 

Morton & Matti, 1993). For ν = 0.25 and D = 12 km (Lindsey et al., 2014; Tymofyeyeva & Fialko, 2018), Equa-
tion 3 suggests a rotation of 12–15°. Using a depth-averaged slip instead of surface slip in Equation 3 reduces 
the estimated rotation by a few degrees. This is a lower bound on the total possible rotation amount because it 
neglects contributions from other major faults such as the Elsinore fault, as well as the distributed deformation 
due to numerous small faults in the bulk of the brittle upper crust (e.g., Fialko & Jin, 2021).

A common rotation away from the optimal orientation however suggests θ0 of 35°, and μ  <  0.4, lower than 
predicted by the Byerlee's law. Another possibility is that the relatively small and immature left-lateral faults are 
optimally oriented assuming Byerlee's friction. The same may be true for immature right-lateral faults, however 
the QLCs that are associated with major right-lateral faults (Figure 2) likely owe their orientations to the long-
term fault rotation, as discussed above.

We interpret differences between the observed distributions of dihedral 
angles in different tectonic areas in terms of the amount of a total accom-
modated strain. In case of injection-induced seismicity in the central US 
(Alt & Zoback, 2017; Schoenball & Ellsworth, 2017; Skoumal et al., 2019), 
pre-existing faults are brought to failure due to increases in the pore fluid 
pressure, resulting in a preferential activation of faults that are optimally 
oriented with respect to the background stress. The Ridgecrest, eastern 
California, region is a developing shear zone, where new and pre-existing 
faults are continually activated and rotated primarily via distributed failure 
and simple shear (Fialko & Jin, 2021). The Anza-Borrego shear zone exem-
plifies a “high strain” end-member, whereby much of the deformation and 
rotation (Hauksson et al., 2022) is accommodated by well-developed plate 
boundary faults. The main difference between the observed orientations of 
small active faults in the Ridgecrest area of the Eastern California Shear Zone 
and the Anza-Borrego Shear Zone is that the latter features a non-symmetric 
distribution of conjugate faults with respect to the principal compression and 
shortening rate axes (Figure 4), likely due to different amounts of slip accom-
modated by the respective fault systems. At the initial stages of the shear zone 
development, synthetic (right-lateral) faults are rotated less than the anti-
thetic (left-lateral) faults (Fialko & Jin, 2021) and are thus favored to grow. A 
continued slip on mature right-lateral faults rotates immature left-lateral faults 
toward the principal compression axis, which may eventually deactivate the 
rotated left-lateral faults and initiate slip on new or pre-existing left-lateral 
faults that are more optimally oriented for failure. Mature well-slipped faults 
may also develop deep crustal “roots” (Jin et al., 2023; Leloup et al., 1995; 

Figure 4. A distribution of strike angles of high-quality QLCs shown in 
Figure 3; Figures S4–S16 in Supporting Information S1. Red histogram 
corresponds to right-lateral faults (total of 137 samples), and blue histogram 
corresponds to left-lateral faults (total of 195 samples). Thin magenta line 
denotes the average orientation of the principal shortening rate axis (see Figure 
S3 in Supporting Information S1). The magenta error bar denotes 4 standard 
deviations.

Figure 5. A histogram of dihedral angles between the conjugate strike-slip 
faults shown in Figure 4. Dihedral angles were computed between every 
possible pair of right- and left-lateral faults. Error bars denote 2σ uncertainty 
(see Fialko (2021) for details of the error analysis). The red curve denotes the 
best-fitting Gaussian distribution. The mean is 70.8 and the standard deviation 
is 28.9°.
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Takeuchi & Fialko, 2012) which can stabilize the fault orientation at ∼45° to the principal shortening axis (i.e., 
optimal for ductile shear), potentially explaining the observed near-orthogonal orientations of mature conjugate 
faults (Fialko & Jin, 2021; Thatcher & Hill, 1991; Yue et al., 2012). Under this model, deep shear zones are the 
consequence, rather than the cause, of fault development in the brittle upper crust.

4. Conclusions
We used a new algorithm to quantify orientations of small active faults at the southern end of the San Andreas-San 
Jacinto fault system, referred to as the Anza-Borrego shear zone. The dihedral angles between conjugate strike-
slip faults are nearly normally distributed with a mean value of ∼70°. The fault strikes are asymmetrically distrib-
uted with respect to the principal strain rate and stress axes, with left-lateral faults optimally oriented for failure 
assuming the Byerlee's law, and right-lateral faults rotated by ∼10–20° counter-clockwise from the optimal orien-
tation. We argue that the observed high-angle conjugate faults are not due to either low coefficient of friction 
or ductile shear zones in the lower crust, but can instead be explained by rotation due to a long-term tectonic 
deformation. Faults may form or be activated at near-optimal orientations, and subsequently rotate away from the 
principle shortening axis. A comparison to other areas of well-documented small active faults reveals an increase 
in the average dihedral angle with the total accumulated tectonic strain. We attribute the observed asymmetric 
distribution of conjugate faults with respect to the principal strain rate axis to a difference in the total amount of 
slip accommodated by the right- and left-lateral fault systems.
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