
1. Introduction
Landslides can denude mountains, transport sediments to fluvial networks, and impact regional ecosystems by 
drastically changing the landscape (e.g., Benda & Dunne, 1997; Gomi et al., 2002; Imaizumi & Sidle, 2007; 
Korup, 2005). Landslides involve hydromechanical processes that move rocks and sediments downhill, driven by 
gravitational forces (e.g., X. Fan et al., 2017; Gomberg et al., 1995; Milillo et al., 2014). A broad range of mass 
wasting events can be categorized as landslides, such as debris flows, lahars, slope creep, and avalanches (e.g., 
Allstadt, 2013; Delbridge et al., 2016; Iverson et al., 2000; Lai et al., 2018). Such events can last from minutes 
to years (e.g., Ekström & Stark,  2013; Gualtieri & Ekström, 2018; Hu et  al.,  2019) and result in significant 
damage and casualties (Froude & Petley, 2018; Hibert et al., 2015; Petley, 2012). In addition to mass wasting, 
landslides that occur near bodies of water may produce local tsunamis and further endanger local communities 
(Bardet et al., 2003; Dufresne et al., 2018). Despite much progress made toward understanding of landslides and 
the associated hazards, a number of questions remain, largely due to a lack of systematic characterization of the 
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Plain Language Summary Landslides are mass wasting events that can involve a variety of 
processes such as rock falls, avalanches, debris flows, slumping, and creep, all of which ultimately result 
in displacement of large volumes of Earth materials downslope due to gravity. Rapidly moving landslides 
are some of the most devastating natural disasters. Much of data on landslides come from events that affect 
populated areas; however, many more landslides are expected to occur in remote areas and go unnoticed. In 
this study, we develop a procedure that systematically combines seismic and space-based observations to detect 
and investigate remote landslides in Alaska. We identified a previously unknown landslide that occurred on 
22 September 2017 in the Wrangell Mountains region. This event displaced millions of tons of shallow Earth 
materials in a matter of minutes. Our method can be used to systematically investigate landslides in Alaska, as 
well as other remote regions around the globe.
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principal physical parameters of landslides such as their location, time, volume, and sliding speed (Ekström & 
Stark, 2013; Mondini et al., 2021).

It is challenging to continuously monitor landslides in remote regions because conventional methods such as field 
and aerial surveys are costly and time-consuming, and typically limited to case studies (Dufresne et al., 2019; 
Guthrie et al., 2012; Toney et al., 2021). Due to the challenging terrain conditions, field investigations of Alaska 
landslides are infrequent and have been mainly conducted in coastal regions (Hibert et al., 2015). For this reason, 
relatively few landslides have been reported in Alaska (Bahavar et al., 2019; Kirschbaum et al., 2015), despite the 
fact that they include some of the largest landslides observed in the United States. For example, the 2015 Taan 
Fjord landslide near Icy Bay mobilized 180 million tons of rocks and produced a local tsunami reaching as high 
as 193 m (Higman et al., 2018). As slope failure occurrence correlates with the topographic relief in mountainous 
areas (Korup et al., 2007), landslides likely occur frequently in Alaska but undetected (Kirschbaum et al., 2015).

Remote sensing methods, such as Synthetic Aperture Radar (SAR), have been increasingly exploited to study 
landslides (Colesanti & Wasowski, 2006; Fruneau et al., 1996; Singhroy et al., 1998). For example, SAR can 
directly image the surface disturbance due to landslides at a high spatial resolution by comparing the image 
amplitude changes or phase coherence between radar acquisitions taken before and after an event (e.g., Mondini 
et  al.,  2021). Additionally, satellite or aerial optical imagery can provide ground-truth observations to deter-
mine exact landslide location, composition, area, and runoff distance (Dufresne et al., 2019; Lacroix et al., 2018; 
Qu  et al., 2021). However, due to infrequent acquisitions, exact timing of landslides and details of their initiation 
cannot be solely resolved using space-based observations (Mondini et  al.,  2021). Additionally, weather may 
thwart optical satellite observations, further reducing usable images.

Seismic observations have shown promise in identifying landslides (Ekström, 2006; W. Fan et al., 2020; Manconi 
et  al.,  2016; Xie et  al.,  2020) and resolving landslide dynamics (Brodsky et  al.,  2003; Intrieri et  al.,  2018; 
Kanamori & Given, 1982; Lai et  al.,  2018; Poli,  2017). Fast-moving landslides can generate seismic signals 
from short-period (≥1 Hz; Doi & Maeda, 2020; Hibert et al., 2011; Yamada et al., 2012) to intermediate and 
long-period motion (≤0.1 Hz; Allstadt, 2013; Kanamori & Given, 1982; Eissler & Kanamori, 1987). Particularly, 
the intermediate- to long-period (20–150 s) seismic waves can often be observed globally and have been used to 
study landslide occurrence in remote regions (Ekström, 2006; Ekström & Stark, 2013; W. Fan et al., 2018). The 
seismic records have a high temporal resolution and may be used to continuously monitor landslides, comple-
menting the space-based observations (e.g., W. Fan et al., 2018; Okuwaki et al., 2021).

Here, we develop a semiautomated workflow combining space-based and seismic observations to detect and 
locate Alaska landslides and further use the suite of geophysical observations to infer landslide failure processes. 
We first apply the method to the well-documented 2016 Lamplugh Glacier landslide (Bessette-Kirton et al., 2018; 
Coe et al., 2018; Dufresne et al., 2019) to verify our procedure. We then use our method to identify a previously 
unknown landslide that occurred on 22 September 2017 in the Wrangell Mountains region in Alaska (Figure 1). 

Figure 1. Rayleigh wavefields of the 28 June, 2016, Lamplugh Glacier landslide (a) and the 22 September, 2017 Wrangell Mountains landslide (b). Surface wave 
propagation directions and arrival times are shown as the arrows and dots, respectively. Triad subarrays are shown as gray triangles. Red stars are the seismically 
resolved locations. Insets show wavefields in the contiguous United States.
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As we demonstrate below, the 2017 Wrangell Mountain landslide had two subevents and a multiple-stage failure 
process. The results demonstrate the effectiveness of the procedure and offer new insights into the failure dynam-
ics of complex landslides in Alaska.

2. Data
2.1. Seismic Data

We use continuous, vertical-component, broadband seismic data to locate landslides with stations registered 
at the International Federation of Digital Seismograph Networks (FDSN) (see Data Availability Statement for 
details). The data were downloaded from the Data Management Center (DMC) of the Incorporated Research 
Institution for Seismology (IRIS). The original records are sampled at 1 Hz, and we band-pass filter them in the 
20–50 s period band using a fourth-order Butterworth filter.

To investigate the landslide failure dynamics, near-field to regional-distance seismic records are used for invert-
ing centroid single force (CSF) models of the landslides (Figures 2–6). We use three-component, broadband 
displacement records from stations within five degrees of the landslide location to invert for the CSF models 
(see Open Research for details). The records are sampled at 40 or 50 Hz, and we fit waveforms in a 200 s long 
time window around the surface waves: assuming an apparent move out velocity of 3.7 km/s, the time window 
is selected as 40 s before and 160 s after the predicted arrival time, and the waveforms are tapered before being 
used for the CSF inversion. Additionally, we inspect high-frequency (1–10 Hz) radiation of near-field stations 
(Figure 2) to confirm the nature of the seismic sources.

2.2. Space Geodetic and Remote Sensing Data

We use Sentinel-2 optical imagery to confirm whether the seismically detected sources are indeed associated with 
landslides (Figure 8). The optical images are downloaded from Copernicus Open Access Hub of the European 
Space Agency. We use images from bands 2, 3, and 4 of the Multispectral Instrument on board of the Sentinel-2A 
and Sentinel-2B satellites to generate a true color composite of the regions of interest. In addition to the optical 
imagery, we use SAR data from the Sentinel-1A satellite (Figures 7 and 9). The SAR data offer independent 
confirmation and validation of the events and are highly complementary to the Sentinel-2 optical imagery. The 
data were processed using GMTSAR (Jin & Fialko, 2020; Sandwell et  al.,  2011; Tymofyeyeva et  al.,  2019). 
We calculate the radar amplitude for each acquisition date and coherence of the interferometric phase. Both the 
phase coherence and variations in the radar amplitude can carry information about surface changes caused by 
landslides.

3. Methods
3.1. Detecting Hidden Seismic Sources Using Coherent Seismic Surface Wavefields

We use AELUMA (Automated Event Location Using a Mesh of Arrays) to detect and locate seismic sources in 
Alaska (de Groot-Hedlin & Hedlin, 2015; W. Fan et al., 2018). The method uses surface waves recorded by large 
aperture arrays to identify seismic sources. It first detects coherent surface wave signals using subarrays and then 
assembles the measured surface wave arrival angles to locate the seismic sources, assuming that the waves propa-
gate along great circle paths (W. Fan et al., 2018). In practice, we first divide the large arrays into nonoverlapping 
three-station subarrays (triads). Each triad is required to have internal angles between 30 and 120° to reliably 
resolve the arrival angles. Next, beamforming analysis is applied to band-passed filtered (20–50 s) continuous 
data to detect coherent signals. We use a 600 s long sliding time window and a 300 s increment step to examine 
the data. The beamforming analysis is applied to each triad and time window independently. The detections 
are screened through a quality control procedure, such as examining the average cross-correlation coefficient, 
local phase velocity, and beam-power value of each detection (W. Fan et al., 2018). The remaining detections 
are used for association, which are grouped into nonoverlapping clusters. Each cluster is then used to locate 
one seismic source, and its location uncertainty is empirically estimated by examining the spatial structure of 
candidate source locations that yield misfits within a predefined threshold (de Groot-Hedlin & Hedlin, 2018; W. 
Fan et al., 2018, 2020). Finally, the quality of each located seismic event is assessed to avoid duplicates and a 
catalog is populated. The approach is data-driven, makes few assumptions about the nature of the seismic sources, 
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Figure 2. Record sections that are aligned using the seismically resolved locations in Figure 1. Records are normalized 
by their peak amplitudes, respectively, and they are band-pass filtered to show signals in the 20–70 s period band. Red 
lines show a 3.6 km/s reference move out velocity. AELUMA origin time (0 s) denotes 16:20:53 (UTC) for the Lamplugh 
Glacier landslide and 09:43:11 (UTC) for the Wrangell Mountains landslide. (a) Vertical record section of the 28 June, 2016, 
Lamplugh Glacier landslide. (b) Vertical record section of the 22 September, 2017 Wrangell Mountain landslide. (c) Vertical 
high-frequency record (0.1–1 s period) of the 2016 Lamplugh Glacier landslide at the nearest station BESE (119 km away). 
(d) Vertical high-frequency record (0.1–1 s period) of the 2017 Wrangell Mountain landslide at the nearest station MCR2 
(26 km away). High-frequency records have spindle shapes for both events. Spectrograms of vertical component at BESE (e) 
for the 2016 Lamplugh Glacier landslide and at MCR2 (f) for the 2017 Wrangell Mountain landslide. Gray boxes show the 
part where the stations have recorded high frequency (>1 Hz) radiation.
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and does not need a velocity model (W. Fan et  al.,  2018). The method is particularly well-suited for detect-
ing unconventional seismic sources such as landslides that are commonly missed in standard catalogs (W. Fan 
et al., 2019, 2020; Okuwaki et al., 2021). However, the method does not resolve the driving physical processes 
of the detected seismic sources, for example, earthquakes or landslides. Therefore, we further use space-based 
observations to confirm and validate the nature of the detected sources (Section 3.3) and apply seismic waveform 
inversion to resolve the source mechanisms (Section 3.2) below.

3.2. Centroid Single Force Inversion

The acceleration and deceleration of a landslide moving downhill is expected to impose shear tractions at 
the sliding interface, which can be approximated as centroid single forces (CSF; Kanamori & Given,  1982; 
Kawakatsu, 1989). The sliding process can generate broadband seismic surface waves propagating up to thou-
sands of kilometers if the landslide is sufficiently large, couples well with solid Earth, does not significantly 
disintegrate, and moves rapidly (Allstadt, 2013; Fukao, 1995). The CSF models can offer high-resolution insights 
into the landslide failure process and characteristics (e.g., Allstadt, 2013). Here, we use regional three-component 
broadband seismic records to invert for CSF models of the 2016 Lamplugh Glacier and 2017 Wrangell Mountains 
landslides (Figures 3–5). We use a frequency-domain inversion method derived from W. Fan et al. (2014), which 
was initially designed for finite-fault slip inversion. We apply the inversion scheme iteratively to update the model 
by gradually including usable traces within five degrees of the landslides.

The landslide displacement waveforms are convolutions between the CSF model and the Green's functions for 
a given source-receiver pair. In the frequency domain, the displacement spectra are linearly related to the CSF 
spectra (Equation 1), which can be inverted for each frequency bin independently. In a discrete format, the linear 
relation can be written as follows:

𝑢𝑢𝑛𝑛
(

𝑥𝑥, 𝜔𝜔
)

= 𝐺𝐺𝑛𝑛𝑛𝑛

(

𝑥𝑥, 𝜔𝜔
)

𝐹𝐹𝑛𝑛(𝜔𝜔), (1)

where un, Gni, and Fi are the spectra of the displacement seismogram, Green's function, and CSF; ω is the angu-
lar frequency; x denotes the relative locations between the source and receiver; and n and i are the receiver- and 
source-side directions, respectively. The failure history of a CSF model is then obtained from the inverse Fourier 
transform of its estimated spectra. The zero-frequency spectra are set as zero to ensure that the net forces are 
zero. We minimize ℓ1 data misfit in the inversion (Equation 2) to obtain robust models, different from the ℓ2 

Figure 3. Stations used for centroid single force (CSF) inversions. (a) Lamplugh Glacier landslide. (b) Wrangell Mountains landslide. Red stars show seismic locations 
of landslides. Maps show stations within five degrees of the landslides. Blue triangles indicate the stations used in the CSF inversion. Yellow triangles indicate the 
stations that are within the five-degree searching range but are not selected for inversions.
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minimization used in conventional methods, and the procedure is effective when using a large number of stations 
with observation outliers:

� = argmin ‖� −� ⋅ �‖1. (2)

In this study, we use the ground-truth locations obtained from the remote-sensing observations (Table S1 in 
Supporting Information S1) to compute the Green's functions at each station for the CSF inversion. The remote 
sensing locations are defined as the mountain piedmonts. The Green's function is obtained using the Instaseis 
method (van Driel et al., 2015), which extracts Green's functions from a precomputed database that is computed 
using the axisymmetric spectral-element method (Nissen-Meyer et al., 2014). The ℓ1 inverse problem is solved 
using convex optimization (CVX package; Grant & Boyd, 2008, 2014).

In practice, the seismic data are first detrended and the instrument response is removed. We invert CSF spectra 
in the 20–70 s period band (0.014–0.02 Hz) after applying a Tukey taper with a cosine fraction of 15% to the 
200 s long records. The period band is different from the surface wave period band (20–50 s) used for detecting 
seismic sources with the AELUMA procedure. The 20–50  s period band is ideal for surface wave detection 
and location because of its low noise level. For the CSF inversion, we aim to include as much low-frequency 
signals as data permits, hoping to resolve a more complete failure process (Ekström & Stark, 2013). The 20–70 s 
period band is empirically selected to maximize the useable frequency content from the data (e.g., Ekström & 
Stark, 2013). We gradually include all usable data and iteratively update the CSF model. We first manually select 
a set of seismic traces to obtain an initial model, and traces are selected to have clear event signals and low back-
ground noise. With the initial model, we forward compute synthetic waveforms at all stations for all three compo-
nents. The synthetic waveforms (u s) are cross-correlated with the observations, and the normalized residual is 
computed for each trace. Here the normalized residual is defined as ‖u − u s‖1/‖u‖1 using the ℓ1 misfit. Traces 
with cross-correlation (CC) coefficients above a threshold of 0.6 and normalized residual below a threshold of 
0.7 are included to invert for a new CSF model. The cross-correlation procedure emphasizes waveform similarity, 
and it offers a different measure of the CSF model quality from the waveform misfit. Such an inversion-update 
procedure is repeated until no new traces can be added to update the model. The procedure typically converges 
within three iterations.

Further, the cross-correlation during the iteration step would measure delay times that can be used to empirically 
shift the traces before the next iteration. Applying the time correction would reduce impacts from heterogene-
ous three-dimensional (3D) velocity structures in Alaska (Feng & Ritzwoller, 2019; Jiang et al., 2018; Nayak 
et al., 2020). To quantify the uncertainties of the obtained CSF models, we bootstrap the set of traces that are used 
to obtain the final preferred models. In each bootstrap run, we randomly draw 80% of the total traces for the 2016 
Lamplugh Glacier and 2017 Wrangell Mountains landslides, respectively (Figure 5 and Figure S1 in Supporting 
Information S1), and the same traces can be selected multiple times for a realization. We perform 500 bootstrap 
realizations for each landslide to obtain statistically reliable estimates of the model uncertainties.

3.3. Validating and Characterizing Landslides Using Space-Based Imagery

3.3.1. Sentinel-2 Optical Imagery

The Sentinel-2 imagery provide 10 m-resolution, true-color composite of the areas of interest. We initially select 
two images that most tightly bracket the event date and have minimal cloud coverage to examine the source 
region. When needed, we also use additional images taken during different seasons to confirm the nature of seis-
mically detected events (e.g., discriminate landslides and snow avalanches). The optical imagery is further used 
to estimate the landslide area and runout distance. The full deposit imagery is useful for mass estimation, while 
the runout distance can provide key constraints to guide the CSF-derived trajectories (Figure 8).

3.3.2. Sentinel-1 SAR Imagery

We also use Sentinel-1 SAR data to independently classify the seismic detection and characterize the landslide 
parameters by examining the phase coherence and variations in the radar amplitude in the radar images taken 
before and after the event (Mondini et al., 2021; Yonezawa & Takeuchi, 2001). Unlike Sentinel-2 optical imagery, 
Sentinel-1 radar imagery is not limited by weather and light conditions (Rees, 2013). Ground motion due to a 
landslide can cause changes in the reflective properties of the Earth's surface, which can be manifested in varia-
tions in the radar amplitude and phase correlation. Anomalous changes in the radar amplitude can be used to map 
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the landslide extent (Mondini et al., 2021). We focused the raw SAR data into Single Look Complex images, and 
computed the radar amplitude images for each acquisition date. Images were coregistered using the BESD (Bivar-
iate Enhanced Spectral Diversity) algorithm (Wang et al., 2017). We then subtracted the coregistered amplitude 
images to obtain the differential amplitude (e.g., Figure 7). We also computed phase coherence for each inter-
ferometric pair spanning the event date (e.g., Figure 9). Phase coherence is another measure of surface changes 
that can be used to map out the landslide area. All of the above steps are automated and can be readily applied to 
process SAR data covering large areas.

4. Results
We first use data from a known landslide to validate our detection procedure. Our test case is the 2016 Lamplugh 
Glacier landslide that occurred in Alaska.

4.1. The 2016 Lamplugh Glacier Landslide

The Lamplugh Glacier landslide generated globally detectable surface waves (Ekström,  2006; Ekström 
et al., 2012), originated from a north-facing bedrock ridge and ran out onto the Lamplugh Glacier (Dufresne 
et al., 2019). The landslide lasted 75 s, and occurred in two stages, with a total displacement of about 10 km 
in length and a maximum width of 3.5 km and a ratio of fall height to travel distance (H/L) of 0.15 (Dufresne 
et al., 2019). The event had a deposit area of about 21 km 3 and mobilized 1.4 × 10 11 kg of materials (Dufresne 
et al., 2019). Additionally, the landslide triggered a second rock slope failure two hours later, depositing on top of 
the proximal rock avalanche (Dufresne et al., 2019). The 2016 Lamplugh Glacier landslide produced a coherent 
surface wavefield across Alaska and the contiguous United States (Figure 1a). Rayleigh waves can be easily iden-
tified from vertical velocity records that are filtered at 20–70 s period band, and the waveforms remain coherent 
up to 1,000 km away (Figure 2a). The event was detected by 257 triad subarrays from 354 stations. Our seismically 
inferred event location is 3 km away from the mountain piedmont. The nearest station, BESE, is 119 km away 
from the landslide, and its high-frequency record (0.1–1 s period band, vertical component) has a spindle shape 
without clear body wave phases (Figure 2c), which is typical for landslides. Additionally, the spectrum of BESE 
has a bell shaped spectrum (Figure 2e) with the first 30 s exhibiting limited high-frequency radiation, differing 
from typical earthquake seismograms (e.g., Gualtieri & Ekström, 2018). There is more high-frequency radia-
tion 30 s after the event onset, which may be due to changes in the speed of the mobilized material (Dammeier 
et al., 2011; Deparis et al., 2008; Hibert et al., 2011; Norris, 1994).

As a validation of our CSF inversion approach, we estimate a failure model of the 2016 Lamplugh Glacier 
landslide using 45 traces from 25 stations (Figure 3a). The preferred CSF model can explain the seismic obser-
vations well, including traces that are not used in the CSF inversion (example traces in Figures 4a–4c, see all 
traces in Figure S1 in Supporting Information S1). To compare the waveform fit, the synthetic and the observed 
waveforms are normalized by the peak amplitude of the observation for each trace (e.g., Figure 4). The CSF 
model is robustly resolved as the ensemble of bootstrap models does not deviate away from the preferred model 
very much (gray lines in Figures 5a–5c). For each bootstrap realization, we record the normalized residual and 
cross-correlation (CC) coefficient of each waveform, and the median values of the CC coefficient and the median 
values of the residuals are around 0.6 and 0.65 for all three components, respectively (Figure S5 in Supporting 
Information S1). The bootstrap exercises suggests that the waveform fits of the vertical, north-south, and east-
west components are comparable on average (Figure S5c in Supporting Information S1). There is no clear differ-
ences in the misfits between the north-south and east-west components despite the landslide primarily sliding 
northward (Figure S6 in Supporting Information S1). The CSF model suggests that the event had two downward 
acceleration stages and two associated deceleration stages (Figures 5a–5c). The landslide primarily slid toward 
north as suggested by the horizontal accelerations (Figure  6a), consistent with satellite imagery (Figure  7b; 
Dufresne et al., 2019). The peak centroid force is 2.55 × 10 11 N, which empirically corresponds to a displaced 
mass of 1.34 × 10 11 kg (Ekström & Stark, 2013). This mass estimate agrees well with the field survey estimate 
of 1.41 × 10 11 kg (Dufresne et al., 2019).

The 2016 Lamplugh Glacier landslide gave rise to conspicuous changes in the backscatter characteristics of the 
landslide area, expressed in changes in the radar amplitude. For the 2016 Lamplugh Glacier landslide, we use data 
acquired on June 6 and 30 June 2016 by the Sentinel-1A satellite from the descending track 145 (absolute orbits 
11,592 and 11,942) in the Interferometric Wide (IW) swath mode (Figure 7). Figure 7a shows the amplitude of 
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the Sentinel-1 radar image acquired on 6 June 2016, and Figure 7b shows the differential amplitude between 
the June 6 and June 30 acquisitions. As one can see in Figure 7b, the Earth's surface was roughened within the 
landslide area, resulting in an increased backscatter. The respective changes in the radar amplitude are not corre-
lated with the preevent radar amplitude (Figure 7a). The phase coherence from the same interferometric pair 
is unfortunately less useful in this case because of a substantial snow cover that degraded the phase coherence 
over the entire scene. The differential amplitude data suggest that the landslide had a runout of ∼10 km, moving 
northward. The area and boundary of the landslide inferred from the SAR images (Figure 7b) are consistent with 
results of previous studies, which employed optical images and field surveys (Dufresne et al., 2019).

4.2. The 2017 Wrangell Mountains Landslide

Here, we report a previously unregistered event in the Wrangell Mountains region that we discovered using the 
AELUMA method. The event occurred on 22 September 2017 and produced coherent waveforms that were 
detected by 162 triad subarrays from 238 stations in Alaska and the contiguous United States (Figure 1b). We 
confirm that the event is a landslide by inspecting the Sentinel-2 images (Figure 8). Images from three acquisi-
tions, dated 5 August 2017 before the seismically detected event, 20 November 2017 shortly after the event, and 23 
July 2018 in the following summer, are used to investigate the Wrangell Mountains landslide (Figure 8). Initially, 
we used the two Sentinel-2 images obtained on August 5 and 20 November 2017. These images most tightly 
bracket the seismically detected event and are relatively cloud-free. Changes in surface conditions are obvious 
from a comparison of the two images (see areas outlined by yellow circles in Figures 8a and 8b). However, the 20 
November 2017 acquisition was affected by snow cover (Figure 8b). To verify that the event was a landslide and 
not a snow avalanche, we inspected an image taken in the following summer (23 July 2018, Figure 8c). The land-
slide deposits can be clearly identified in the color composites in the image taken on 23 July 2018 (Figure 8c). 
A comparison of Figures 8a and 8c clearly shows the event was a landslide. The ground-truth location (Table S1 
in Supporting Information S1) obtained from Sentinel-2 imagery is 5 km away from the seismically determined 
location. The Sentinel-2 imagery also suggests that the landslide produced two deposit piles, with the greater pile 
having a runout distance of 1.5 km (Figure 8c). The surface area of the two piles is about 1.6 km 2 in total.

We also verified the landslide occurrence using SAR data that were acquired on September 20 and 2 October 
2017 by the Sentinel-1A satellite from the descending track 14 (absolute orbits 18,461 and 18,636) in the IW 
swath mode (Figure 9). The 2017 Wrangell Mountains landslide is located at the intersection of two subswaths 
(subswaths 2 and 3) of the Sentinel-1A track, and we used both subswaths in our analysis. The respective interfer-
ometric pair features a low phase coherence at the location suggested by the optical Sentinel-2 data. Because the 
location happens to be in the overlap area between two radar subswaths, the same low-coherence feature can be 
seen independently in each subswath (Figure 9). The radar amplitude also changes between the two acquisitions, 
with a higher backscatter anomaly at the landslide site (Figure S7 in Supporting Information S1). From the coher-
ence images, the landslide area is estimated at ∼1.7 km 2 using a coherence threshold of 0.15 (Figures 9d and 9e), 
which is empirically selected to match the surface area resolved from the Sentinel-2 optical images.

The landslide radiated seismic waves that can be clearly identified in the period band of 20–70 s up to 1,000 km 
away (Figure 2b). The record section shows coherent wave packets with a move out velocity of 3.6 km/s, which 
is consistent with typical surface wave velocity in the period band. Station MCR2 is 26 km away from the land-
slide (Figure 2d), and its high-frequency (0.1–1 period band, vertical component) waveform has a spindle shape, 
confirming the source as a landslide. The high-frequency radiation lasted less than 100 s with two main episodes, 
and the second episode has a longer duration with greater amplitudes (Figure 2d). The spectrograms of the event 
(Figure 2f) are similar to that of the 2016 Lamplugh Glacier landslide in bell shapes (Deparis et al., 2008; Hibert 
et al., 2011). The seismic radiation above 5 Hz of the Wrangell Mountains landslide decayed rapidly at further 
distances. For example, station RH05 is 106 km away from the Wrangell Mountains landslide, similar to the 
separation distance between BESE and the Lamplugh Glacier landslide but its relative high-frequency content is 
significantly smaller compared to that of the Lamplugh Glacier landslide.

The CSF model of the Wrangell Mountains landslide suggests a multi-stage failure process (Figures  5d–5f), 
considerably more complex than that of the Lamplugh landslide. The model suggests a total duration of 140 s, 
which is 40 s longer than the high-frequency duration observed at MCR2 (Figure 2d). Multiple acceleration and 
deceleration stages can be identified from the vertical centroid single force history (Figure  5d). The vertical 
force has a comparable peak amplitude as forces at horizontal directions, indicating three-dimensional sliding 
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motions (Figures 5d–5f). The horizontal force histories show that the Wrangell Mountains landslide may have 
changed its sliding directions multiple times, different from the Lamplugh Glacier event, which mostly moved 
northward (Figure 7). The ensemble models from the bootstrap tests are tightly clustered around the preferred 
model (Figures 5d–5f). Waveform ℓ1 residuals and the cross-correlation coefficients from the bootstrap tests 
have a median CC value of 0.79 and a median residual value of 0.54 for the three components. Intriguingly, the 
waveform fits of the north-south component have slightly lower normalized residuals on average (Figure S5 in 
Supporting Information S1) than those of the vertical and east-west components. As the 2017 Wrangell Moun-
tains landslide has a complex failure history, the source excitation might have been azimuthally dependent and 
generated simpler waveforms at the north-south directions (e.g., Figure 4).

5. Discussion
5.1. Uncertainty and Resolution

The seismically resolved locations of the 2016 Lamplugh Glacier and 2017 Wrangell Mountains landslides are 3 
and 5 km, respectively, away from their ground-truth locations (Table S1 in Supporting Information S1). Consid-
ering the ∼60–150 km wavelengths of the 20–50 s period band surface waves used in the AELUMA procedure, 
both cases are well resolved. The location accuracy is comparable to location resolution obtained using regional 
seismic data for landslides in the Eastern Alps (Fuchs et al., 2018). For the two landslides reported in this study, 
their spatial deviations are less than the grid separation distance (0.25°; W. Fan et al., 2018). The seismically 
resolved location may have uncertainties due to the relative positions between the array and the event, searching 
grid parameterization, and the 3D velocity anomalies in Alaska, which would cause surface-wave ray paths 
deviating away from the great circle paths (Feng & Ritzwoller, 2019; Nayak et al., 2020). One way to evaluate 
the impacts of these factors is to examine the spatial structure of the searching grids that have misfit values 
within 125% of the minimum misfit (de Groot-Hedlin & Hedlin, 2018; W. Fan et al., 2018, 2020). The distance 
covariance matrix of the grids can be used to provide an empirical way to examine the location uncertainties. We 
find that the AELUMA locations have maximum spatial uncertainties of 227 and 51 km for the 2016 Lamplugh 
Glacier landslide and the 2017 Wrangell Mountains landslide, respectively. In general, the spatial uncertainties 
are smaller for seismic sources located within the seismic array. We emphasize that these empirical spatial uncer-
tainties represent a conservative upper limit of location deviations, which are different from the true differences, 
the values can be used as an assessment of the possible impacts from factors mentioned above. The true location 
uncertainties are around 5 km as demonstrated using space-based measurements in this study.

The landslide CSF models are inverted from using band-limited seismic data and they best represent the macro-
scopic loading and unloading processes during landslide failures. Microscopic processes, such as the associ-
ated debris flow, may generate high frequency seismic radiation and are challenging to resolve with teleseismic 
records (Chmiel et al., 2021). The 1D velocity model used for Green's functions can capture the waveform shapes 
but cannot predict the surface wave arrival times accurately. To mitigate the 3D velocity influence, we apply 
empirical corrections before performing the inversion, which are obtained from cross-correlating the synthetic 
waveforms with the observations. We also examine the data influences in the CSF models by performing boot-
strap resampling of the traces. The ensemble models from the bootstrap realizations are consistent with each other 
(Figure 5). In our method, we do not postprocess the CSF models, and the onset of a landslide is determined as 
the first downward acceleration and the termination yields the forces reaching zero. Due to the limited frequency 
bandwidth used in the inversion, small oscillations are present in the CSF models. However, they do not impact 
the main failure episodes very much (Figure 5). The waveform misfit is higher than typical values because we 
measure the ℓ1 normalized residuals instead of the ℓ2 normalized residuals. For comparison, our CSF model of 
the 2016 Lamplugh landslide is consistent with other published CSF models (Dufresne et al., 2019; Toney & 
Allstadt, 2021), and its failure process agrees with the surface structures resolved from field surveys (Dufresne 
et al., 2019).

Optical images can directly validate the seismic detections. However, weather conditions may hinder timely 
verification of landslides in Alaska. For example, the first clear optical image of the 2017 Wrangell Mountains 
landslide from Sentinel-2 was taken on 20 November 2017 and the most recent cloud-free image before the 
landslide was taken on 2 August 2017. The three-month separation between the two acquisitions would hamper 
resolving the event occurrence time if we have only used optical images. In such cases, SAR imagery can provide 
a complementary verification for a better temporal resolution. For example, the two SAR images collected on 
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September 20 and 2 October 2017 can provide a more timely assessment of the 2017 Wrangell Mountains land-
slide (12 days separation; Figure 9). The coherence changes in the SAR images sharply delineate a region with 
surface alteration (circled in Figure 9). The quasi-triangular geometry of the low coherence area suggests that 
it is most likely caused by a landslide (Mondini et al., 2021). In contrast, the SAR amplitude changes before 
and after the event are ambiguous at the landslide site, and the cause of the amplitude changes is less definitive 
without other independent geophysical evidence (Figure S7 in Supporting Information S1). The SAR images for 
the 2016 Lamplugh event show the opposite sensitivities such that the differential radar amplitude works better 
as a proxy to identify landslides than the phase coherence (Mondini et al., 2019). The effectiveness of the phase 
decorrelation as a landslide marker is strongly affected by the mean coherence of the study area. If the coherence 
is low (e.g., due to vegetation or snow cover), a further reduction in coherence due to surface disturbance may not 
produce a clear anomaly. The effectiveness of the differential radar amplitude may depend on the perpendicular 

Figure 4. Example waveforms of the landslides. (a–c) Observed and synthetics seismograms of the 28 June, 2016, Lamplugh Glacier landslide. (d–f) Observed 
and synthetics seismograms of the 22 September, 2017 Wrangell Mountains landslide. Black and red traces are observed and synthetic seismograms, respectively. 
Translucent traces were not used for the centroid single force inversion. Origin times (0 s) are the onset times of the 200 s time windows. All traces used in the inversion 
are shown in Figures S1–S4 in Supporting Information S1.
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baseline between the repeat orbits (Manzo et al., 2012; Mastro et al., 2022). Larger perpendicular baselines may 
result in higher “background” values of the differential amplitude due to somewhat different lines of sight, which 
can reduce the signal-to-noise ratio for the amplitude changes caused by the landslide motion. Therefore, we 
suggest to use both SAR measurements to evaluate possible landslide detections.

5.2. Mass Estimate of the 2017 Wrangell Mountains Landslide

The surface area of the 2017 Wrangell Mountains landslide is estimated as 1.6 km 2 using the Sentinel-2 images 
and 1.7 km 2 using the Sentinel-1 phase coherence anomaly (Figure 9a). The satellite images suggest that the land-
slide has two branches, with the southern branch 8.4 times greater in area than the northern branch (Figure 9a). 
Therefore, we focus on the southern branch to estimate its mass. The observed surface alteration area likely 
consists of the source, sliding, and deposition areas. We assume that the mass is conserved and the landslide 
is a deep-seated event because of the coherent surface wavefield. In this case, if the displaced materials had 

Figure 5. Three-component centroid single force (CSF) models of the 2016 Lamplugh Glacier landslide (a–c) and the 2017 Wrangell Mountains landslide (d–f). Blues 
lines show the preferred CSF models. Gray lines show CSF models obtained from the bootstrap resampling. Yellows lines show the 90% confidence intervals inferred 
from bootstrap resampling. Dash lines indicate the estimated origin and ending times of the landslides. Color patches in (d–f) sequentially show five stages of the 2017 
Wrangell Mountains landslide. Time axis is relative to the CSF origin times.

Figure 6. Horizontal centroid single force histories. (a) Lamplugh Glacier landslide. (b) Wrangell Mountains landslide. 
Color and size of the dots indicate the failure time and force strength. Time is relative to the CSF origin times.
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a thickness around 50 m at the source region (Okuwaki et al., 2021; Xu et al., 2021) with an area of 0.04 km 2 
(200 m by 200 m, blue rectangle in Figure 9a), the mass estimate would be 5 × 10 9 kg assuming an average 
bedrock density of 2.5 × 10 3 kg/m 3 (Ridgway et al., 2007). By inspecting the Sentinel-2 image, the deposition 
area of the southern branch (green rectangle in Figure 9a) is estimated to be about 1.25 km 2, and the landslide 
mass would be 5 × 10 9 kg for an average thickness of 1.6 m at the deposition area. These mass estimates are based 
on the assumed landslide material thickness, and are subject to large uncertainties. Better constraints on the land-
slide thickness can be obtained for example, by differencing digital elevation models (Lin et al., 2006), provided 
such models are available with sufficient accuracy and resolution before and after the event.

Following the empirical scaling relationship between the maximum centroid single force and the displaced 
mass in Ekström and Stark (2013), the southern branch of the Wrangell Mountains landslide may have moved 
a total mass of 7.8 × 10 9 kg, and the bootstrap ensemble models suggest a variation of the mass ranging from 
7.5 × 10 9 kg to 8.6 × 10 9 kg within a 90% confidence interval. Additionally, landslide duration magnitude can 
help constrain the mass volume (Manconi et  al., 2016), although the duration magnitude computation would 
require region-specific coefficients for Alaska landslides (Castello et al., 2007), motivating future research for 
Alaska earthquakes and landslides.

We can further combine the parameters obtained from both the CSF model and space-based images for a better 
constrained mass estimate. The runout distance of the southern branch is estimated as about 700–1,500 m from 
the space-based observations, and the runout uncertainty reflects the possible range of the centroid location of the 
displaced mass. Given that the CSF model is the product of the displaced mass times the acceleration (F = ma), 
and the runout is the double integration of the horizontal acceleration (at) in the sliding direction, we can thus 
estimate the displaced mass from the following equation:

Figure 7. (a) Radar amplitude of a Sentinel-1 Synthetic Aperture Radar (SAR) image acquired on June 6 (before the 2016 
Lamplugh Glacier landslide). (b) Differential radar amplitudes from two Sentinel-1 SAR images acquired on June 6 and 30. 
The 2016 Lamplugh Glacier landslide is outlined by the yellow circle and manifested by an increased radar backscatter. The 
amplitude changes do not correlate with the local topography. Note the difference in color limits between the two panels.

Figure 8. Sentinel-2 imagery of the 2017 Wrangell Mountains landslide. (a–c), Optical images acquired on August 5 and 20 November 2017, and 23 July, 2018. Red 
star shows the seismically determined location. Yellow circle indicates surface alternation caused by a landslide. The images are true color composition using bands 2–4 
of Sentinel-2. Color stretching is applied to adjust image brightness.
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𝑚𝑚 =
∫

𝑡𝑡𝑒𝑒

𝑡𝑡𝑠𝑠
𝑑𝑑𝑡𝑡 ∫

𝑡𝑡𝑒𝑒

𝑡𝑡𝑠𝑠
𝐹𝐹𝑡𝑡𝑑𝑑𝑡𝑡

𝐿𝐿𝑡𝑡

, (3)

where ts and te are starting and terminating times of the sliding process, Ft is the horizontal force in the slid-
ing direction, and 𝐴𝐴 𝐴𝐴𝑡𝑡 = ∫

𝑡𝑡𝑒𝑒

𝑡𝑡𝑠𝑠
𝑑𝑑𝑡𝑡 ∫

𝑡𝑡𝑒𝑒

𝑡𝑡𝑠𝑠
𝑎𝑎𝑡𝑡𝑑𝑑𝑡𝑡 is the center of mass runout distance. The horizontal force, Ft, can be 

obtained from the CSF model, and the runout distance can be measured from the space-based images. In practice, 
we forward calculate the trajectory using an assumed mass to identify the optimal value that best matches the 
runout distance resolved from the satellite imagery. Using the combined method, we obtain a mass estimate of 
2.5–5.3 × 10 9 kg with the uncertainty range accounting for the runout distance uncertainties. In summary, the 
mass estimates from different methods are generally in agreement with each other. If we combine all the esti-
mates, the displaced mass of the southern branch is likely in the range of 2.5–8.6 × 10 9 kg. The total mass of both 
branches is estimated in the range of 3.1–13.4 × 10 9 kg by evaluating the northern branch using the same set of 
techniques. For the following dynamic failure analysis, we take a failure mass of 1.5 × 10 9 kg for subevent 1 and 
3.5 × 10 9 kg for subevent 2.

5.3. Failure Dynamics of the 2017 Wrangell Mountains Landslide

Satellite imagery from Sentinel-1 and Sentinel-2 (Figure 9) shows two separate deposits of the 2017 Wrangell 
Mountains landslide. However, it is unclear whether the two deposits were from the same landslide or from 
two separate landslides occurring within the acquisition intervals of satellite data. In the case of a single land-
slide scenario, the relations between the two subevents cannot be resolved using remote sensing data alone. 
Complementary to the imagery, the seismic CSF model can offer insights into the failure trajectory (Figure S10 
in Supporting Information S1) but cannot resolve concurrent or immediate-sequential subevents for landslides 
because of its point source approximation.

Optical images from the Sentinel-2 satellite suggest that the source region of the 2017 Wrangell Mountains land-
slide is from a local mountain crest (the upper left region within the contour area in Figure 9a). The two deposits 
resulted from two distinct sliding trajectories with the northern branch sliding toward an azimuth of 116° and the 

Figure 9. Area estimates of the 2017 Wrangell Mountains landslide. (a) Landslide area estimated using Sentinel-2 imagery. Red contour outlines the landslide. Thin 
blue box shows an assumed source area of subevent 2 and thin green box shows an assumed deposition region of subevent 2. The green box is determined based on 
visual inspections of the local morphology, which is also confirmed by a supervised classification exercise of the area using a random forest tree method. Sentinel-1 
Phase coherence images obtained from two acquisitions on September 20 and 2 October, 2017. (b) Subswath 2. (c) Subswath 3. Low coherence regions within the 
yellow circle correspond to the landslide area. (d and e) Coherence image of sub-swaths 2 and 3 with a mask threshold of 0.15. Masks of Sentinel-1 Synthetic Aperture 
Radar coherence images obtained from two acquisitions on September 20 and 2 October, 2017. Contours show the coherence values.
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southern branch sliding toward an azimuth of 175°. The CSF model indicates an initial sliding direction of 139° 
(Figure S10 in Supporting Information S1), which is more consistent with the trajectory of the northern branch. 
Therefore, the northern subevent likely occurred first. The horizontal trajectory calculated from the CSF model 
can only match the topographic features at the northern branch up to 30 s, while the total failure process lasted for 
about 140 s (Figure S10 in Supporting Information S1). The observations indicate that the southern branch may 
have occurred from 30 to 140 s, suggesting that the two branches were from one landslide. We denote the northern 
and southern branches as subevent 1 and 2, respectively.

We therefore divide the CSF model into two parts to study the spatiotemporal evolution of the two subevents. 
The starting time of subevent 2 is determined by comparing the CSF horizontal trajectory to the topographic 
features (Text S1 and Figure S10 in Supporting Information S1). The trajectory is the displacement integrated 
from the horizontal accelerations, which are obtained by dividing the mass estimates (1.5 × 10 9 kg for subevent 
1, 3.5 × 10 9 kg for subevent 2) from the horizontal centroid single forces. The results show that the transition 
between the ending of subevent 1 and the initiation of subevent 2 most likely occurred at 40 s. There may have 
been a short overlap between the two subevents because the three-component centroid forces do not synchro-
nize to zero at the same time, suggesting a possible concurrent ending and starting of the two subevents during 
30–40 s.

While subevent 1 is relatively simple with one episode of sliding with a linear trajectory (Stage 1), subevent 
2 likely had four sliding stages lasting for about 100 s (Stages 2–5 in Figures 10a and 5d–f). Subevent 2 likely 
initiated from Area B in Figure 10c and slid toward a direction of 185° (Stage 2). The mobilized materials hit a 
mountain ridge with a southeast strike at 67 s and then turned toward a direction of 94°, sliding for another 23 s 
(Stage 3). Bounded in a valley, the subevent was forced to turn toward 164° at 90 s again and then moved along an 
incision valley from 90 to 120 s (Stage 4). When the failure material reached the bottom of the mountain at 120 s, 
the vertical centroid single force dropped to zero due to the low topographic relief, and the runout gradually lost 
its momentum (Stage 5). The Stage 5 sliding caused the material to spread out in a local basin with an approxi-
mate footprint of 1.25 km 2 (Figure 10a). Visual inspections of the Sentinel-2 and Google Earth satellite imagery 
(Figures 8c and 10a) suggest a possible overshoot of the failure material at the end of Stage 2. Some landslide 
material may have slid beyond the ridge around 50 s.

The peak sliding velocity of subevent 2 is about 39 m/s, assuming a failure mass of 3.5 × 10 9 kg. The sliding veloc-
ity is comparable to the 2015 Taan Fiord and the 2016 Lamplugh Glacier landslides (e.g., Dufresne et al., 2019; 
Gualtieri & Ekström, 2018). The failure processes of the two subevents inferred from the CSF model (horizon-
tal displacements) match well with the trajectories identified from morphology features using satellite images 
(Figure 10). The vertical displacement is not used for inferences because it does not match the elevation changes 
(Figures S8 and S9 in Supporting Information S1). This is not surprising as CSF models of other landslides also 

Figure 10. Inferred failure process of the 2017 Wrangell Mountains landslide. (a) Horizontal sliding trajectories of two subevents on a map-view satellite image. 
Colored lines represent five sliding stages with their occurrence times indicated in the color bar. Overlapping time of the two subevents from 30 to 40 s are not 
interpreted. (b) Schematic sliding process on an oblique-view satellite image. (c) Zoom-in view of the source areas in (a). Area A and Area B are two possible initiation 
sites. Black arrow shows the sliding direction of Stage 2. Pink arrows show possible sliding directions of subevent 1. Background images are from Google Earth™ 
taken on 4 August 2004, provided by Maxar Technologies.
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have challenges in fitting the elevation changes (e.g., Toney & Allstadt, 2021; Toney et al., 2020). It is likely 
because the CSF model is obtained from band-limited seismic data and we used a simplistic 1D velocity model 
to compute the Green's functions without considering the topographic effects. The good azimuthal coverage of 
the network may help better resolve the horizontal CSF components in comparison to the vertical component. 
Additionally, the short period data (∼20 s) may have further challenged the modeling efforts due to the inaccurate 
velocity model. Further systematical modeling exercises are warranted to investigate the observed discrepancy.

Landslides may occur frequently in the region at the same spots. The source areas (Areas A and B) identified 
in Figure 10c were from an optical Maxar satellite image taken in 2004, which indicates previous landslides 
occurring before 2004. In conjunction with the 2017 landslide, the images indicate that the slope materials have 
been unstable for decades, and the material and topographic conditions may favor retrogressive landslides, which 
propagate the failure surface upslope toward the crest. The source areas are likely covered in snow in winter times 
(Figure 8b) and the snow would fully melt in summer times (Figure 8c). The snowline of the Wrangell Mountains 
may have been retreating toward higher altitude in recent decades. The rapid changes of surface hydraulic condi-
tions would facilitate weathering and cause material disintegration, destabilizing the mountain slope at the source 
areas and possibly leading to repeating landslides.

The current set of geophysical observations cannot conclusively determine the origin source region of subevent 
1. The two subevents are separated by a mountain ridge, and subevent 1 could be from either Area A or B as 
highlighted in Figure 10c. The CSF model favors Area A as it does not indicate an initial acceleration toward the 
northeast direction, which would be expected if subevent 1 was from Area B. However, as shown in Figure 10c, 
the 2004 satellite image suggests that materials from Area B may have slipped toward the trajectory of subevent 
1 in previous landslides. The relics in Figure 10c suggest that subevent 2 came from the ridge denoted as Area 
B. Therefore, both subevents of the 2017 Wrangell Mountains landslide may have originated from Area B as 
two pieces of one destabilized mass. Alternatively, subevent 1 may have originated from Area A, and its failure 
destabilized mass in Area B and induced subevent 2. The sequential failure of the two subevents resolved in the 
CSF model (Figure 10) supports this scenario. Our observations suggest that failure processes of landslides can 
be highly complex and multiple subevents can trigger each other to cascade into greater landslides.

5.4. Outlook on Investigating Alaska Landslides

Integrating seismic and space-based observations has proven an effective approach in detecting and locating 
landslides (e.g., Manconi et al., 2022; Yamada et al., 2012, 2013) and has provided insights into landslide fail-
ure mechanisms (e.g., Ekström & Stark, 2013; Walter et al., 2020; Yamada et al., 2018). The two case studies 
presented above show that our semiautomated workflow is highly effective in identifying Alaska landslides and 
revealing their failure dynamics. In particular, the 2017 Wrangell Mountains landslide is one order of magni-
tude smaller than the Lamplugh Glacier landslide in mass but had a more complex failure process. The 2017 
Wrangell Mountains landslide is also much more complex than other recent landslides in Alaska (e.g., Gualtieri 
& Ekström, 2017; Toney et al., 2021). Our case study suggests that the failure processes of Alaska landslides are 
poorly known and emphasizes the necessity to systematically study landslides in the region. Our procedure has the 
potential to be applied to a large set of continuous records to efficiently identify most, if not all, of the Alaska land-
slides above a certain detection threshold. Specifically, we can first use the AELUMA method to systematically 
detect and locate abnormal seismic sources and then use SAR and optical satellite data to obtain exact locations 
and quantitatively evaluate surface alternations in the seismic detection areas. The seismic detection method does 
not require phase-picking, an accurate velocity model, or knowing the source type. The SAR data products can 
be obtained from a number of providers, including for example, routinely processed data products at the Alaska 
Satellite Facility, and the optical images are freely provided by the European Space Agency. After confirming 
the events as landslides, our CSF modeling procedure is computationally efficient and designed to incorporate 
records from seismic stations within five degrees or even further from an event. The procedure requires an analyst 
to select an initial set of traces, but it does not require an accurate landslide location, assuming a location error 
of less than 5 km as shown in this study. The location error can be corrected by the cross-correlation procedure 
to remove the effects of inaccurate arrival times. The inversion method iteratively update the model based on 
all available data within the preselected distance range. Finally, we show that combining satellite imagery and 
seismically determined CSF models can yield a better understanding of the landslide dynamics. For example, 
we combine the remote sensing data and the CSF model to infer the sequential failure process of the two 2017 
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Wrangell Mountains subevents, and we use the geodetic measurements of landslide runout distances to constrain 
integrating the CSF failure history to obtain the preferred mass estimates for the subevents.

6. Conclusions
We developed a semiautomated workflow to use seismic and space-based observations to detect and locate 
Alaska landslides. Taking the 2016 Lamplugh Glacier landslide as a validation case, we show that our seismi-
cally resolved location is within 3 km of the actual location ground-truthed by the remote sensing data. The 2016 
Lamplugh Glacier landslide can be clearly resolved in the radar amplitude changes obtained from Sentinel-1 SAR 
data. Applying the AELUMA detector to continuous seismic data in 2017, we identify a previously unknown 
landslide in the Wrangell Mountains region. The landslide is confirmed using the Sentinel-2 optical imagery and 
phase coherence from Sentinel-1 data. The 2017 Wrangell Mountains landslide site is within 5 km of the seismi-
cally resolved location, demonstrating the robustness and accuracy of our procedure. We further use regional seis-
mic records to obtain a centroid single force model of the landslide. The 2017 Wrangell Mountains landslide had 
two separate, sequential subevents, which involved five stages of sliding, and its dynamics were likely controlled 
by local terrain features. Further, satellite images suggest that the region may have landslides repeatedly occur-
ring at the same locations. Our results demonstrate that integrating multiple geophysical methods can illuminate 
complex landslide failure processes in Alaska and elsewhere.

Data Availability Statement
The seismic data were provided by Data Management Center (DMC) of the Incorporated Research Institutions 
for Seismology (IRIS). The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, 
were used for access to waveforms, related metadata, and derived products used in this study. Sentinel-1 data 
were provided by the European Space Agency (ESA) through Alaska Satellite Facility (ASF) and UNAVCO. 
Sentinel-2 data were provided by European Space Agency (ESA) through the Copernicus Open Access Hub 
website (https://scihub.copernicus.eu). The high resolution optical imagery in Figure 10 is provided by Maxar 
Technology through Google Earth. The seismic data were downloaded using irisFetch (https://ds.iris.edu/ds/
nodes/dmc/software/downloads/irisfetch.m/2-0-12/) (Hutko et  al.,  2017), and the synthetic seismograms were 
computed using Instaseis (https://instaseis.net/) (van Driel et al., 2015). The AELUMA code can be obtained on 
request through IRIS (https://ds.iris.edu/ds/products/infrasound-aeluma) (Hutko et al., 2017).
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Text S1: Subevents of the 2017 Wrangell Mountains landslide10

We use local topographic features to constrain the sliding process of the 2017 Wrangell11

Mountains landslide (e.g., Crowley et al., 2003; Gualtieri & Ekström, 2018). The runout12

of subevent 1 observed in the satellite images matches the horizontal displacement in-13

tegrated up to 30 s. Subevent 1 likely ended before 40 s because the remaining trajec-14

tory matches the topography of subevent 2 precisely if its occurrence starts on 40 s (Fig-15

ure S10). The results suggest no significant amount of forces from subevent 1 after 40 s.16

Additionally, the southward trajectory after 40 s cannot be explained by the topogra-17

phy of the incision valley near subevent 1 (Figure S10). However, such a direction can18

be explained by the topography near subevent 2. The two subevents may have overlapped19

because the three-component centroid signal forces do not synchronize to zero in between20

30 to 40 s.21
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Tables S1 to S422

Table S1. Landslide centroid locations

2016 Lamplugh landslide 2017 Wrangell Mountains
landslide

AELUMA location 58.8046N;136.9087W 61.5258N;143.8212W
AELUMA time 16:20:53 UTC 09:43:11 UTC

Space-based location 58.7654N;136.8936W 61.7398N;143.9786W

Table S2. Maximum centroid single forces and mass estimation following Ekström and Stark

(2013) for the 2017 Wrangell Mountains landslide

Subevent 1 Subevent 2 Total

Maximum force 0.864 × 1010 N 1.448 × 1010 N
Mass estimate 4.66 × 109 kg 7.82 × 109 kg 12.48 × 109 kg

90% confidence
interval, maximum
force

0.831/0.891×1010 N 1.392/1.583×1010 N

90% confidence
interval, mass
estimate

4.49/4.81×109 kg 7.52/8.55×109 kg 12.01/13.36×109 kg
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Table S3. Mass estimate based on geodetic and seismc observations for the 2017 Wrangell

Mountains landslide

Subevent 1 Subevent 2 Total

Mass runout dis-
tance

600 m 1000 m

Mass estimate 1.5 × 109 kg 3.5 × 109 kg 5.0 × 109 kg

Mass runout range 300 − 1500 m 700 − 1500 m
Mass estimate
range

0.6/3×109 kg 2.5/5.3×109 kg 3.1/8.3×109 kg

Table S4. Mass estimate based on area and thickness for the 2017 Wrangell Mountains land-

slide

Subevent 1 Subevent 2 Total

Total area 0.23 km2 1.47 km2 1.70 km2

Source area 0.01 km2 0.04 km2 0.05 km2

Passage area 0.05 km2 0.18 km2 0.23 km2

Deposition area 0.17 km2 1.25 km2 1.43 km2

Assumed source
thickness

50 m 50 m

Assumed deposi-
tion thickness

1.6 m 2.9 m

Assumed density 2.5 × 103 kg/m
3

2.5 × 103 kg/m
3

Mass estimate 1.25 × 109 kg 5.01 × 109 kg 6.25 × 109 kg
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Figures S1 to S1123

Figure S1. Observed and synthetic seismograms of the June 28, 2016 Lamplugh Glacier land-

slide for stations within five-degree epicentral distance. Black and red lines are the observed and

synthetic seismograms, respectively. Opaque traces were not included in the centroid single force

inversion. Left to right columns are for the vertical, north, and east components, respectively.

Cross-correlation coefficients and station names are listed above the traces.
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Figure S2. Observed and synthetic seismograms of the September 22, 2017 Wrangell Moun-

tains landslide landslide for 50 stations within five-degree epicentral distance. Legends are similar

to those Figure S1.
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Figure S3. continued from S2. Observed and synthetic seismograms of the September 22,

2017 Wrangell Mountains landslide landslide for another 50 stations within five-degree epicentral

distance. Legends are similar to those Figure S1.
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Figure S4. continued from S3. Observed and synthetic seismograms of the September 22,

2017 Wrangell Mountains landslide landslide for the remaining stations within five-degree epicen-

tral distance. Legends are similar to those Figure S1.
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Figure S5. Histograms of the waveform residuals and cross-correlation coefficients from boot-

strap realizations. (a) and (b), three-component cross-correlation coefficients of the observed

and synthetic traces for the 2016 Lamplugh Glacier landslide and the 2017 Wrangell Mountains

landslide, respectively. (c) and (d), three-component waveform residuals between the observed

and synthetic traces for the 2016 Lamplugh Glacier landslide and the 2017 Wrangell Mountains

landslide, respectively. Red lines denote the median values for each distribution.
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Figure S6. Horizontal displacement of the 2016 Lamplugh Glacier landslide. The mass used

to calculate the displacement is 3.6 × 1011 kg (Toney & Allstadt, 2021)

.
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Figure S7. Differential radar amplitude calculated using two Sentinel-1 SAR images acquired

before and after the 2017 Wrangell Mountains event. The yellow circles outline areas with en-

hanced backscatter that do not correlate with the local topography. (a), Differential amplitude of

sub swath 2 (b), Differential amplitude of subswath 3.
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Figure S8. Vertical displacement of subevent 1 of the Wrangell Mountains landslide. Blue

line is the vertical displacement integrated from the vertical acceleration. Red line is the mea-

sured elevation variation.

–12–



manuscript submitted to JGR: Earth Surface

Figure S9. Vertical displacement of subevent 2 of the Wrangell Mountains landslide. Legends

are similar to those of Figure S8.
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Figure S10. Horizontal trajectories determined from integrating the accelerations, assuming a

mass of 1.5×109 kg for subevent 1 and a mass of 3.5×109 kg for subevent 2. Color dots represent

the sliding time since the origin time. Background satellite image is from Google Earth provided

by Maxar Technologies.
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Figure S11. Horizontal trajectory of subevent 2 determined from using the preferred CSF

model and the steepest descent path according to the ALOS AD3D30 digital elevation model.
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